SIEMENS

MMC 卡数据的读写

Getting Started of MMC data reading and writing

Getting Started

Edition (2008年1月)

摘要

本文主要阐述对于只装载在 MMC 卡中的数据的处理方法。

- 功能介绍
- 系统结构
- 应用举例

关键词 MMC 卡数据读写

Key Words MMC data reading and writing

目 录

MMC	卡数据的读写	. 1
1.	本例功能介绍	. 4
2.	示例系统的体系结构	. 4
3.	本例需要的设备	. 4
4.	只在 MMC 中创建数据块	. 4
4.1	方法 1: 在 STEP7 中手动创建只存于 MMC 的数据块	. 4
4.2	方法 2: 在程序中创建只存于 MMC 的数据块	. 5
5.	读写 MMC 的数据	. 6
5.1	写数据到 MMC 卡中,调用 SFC84	. 6
5.2	读 MMC 中的数据到 CPU 中,调用 SFC83	. 6

1. 本例功能介绍

由于CPU 的数据容量有限,可以把CPU 的数据存放于MMC 中,并对其中数据进行读写 操作,典型应用为数据配方功能,这些数据可以只存于 MMC (Load Memory)中,而不占 CPU 的容量 (Working Memory),当需要使用时可通过程序读写。注意 MMC 的存储次数为 100000 次。

2. 示例系统的体系结构

图 0 本例中选用一个S7-300 CPU314C-2DP, 并插入MMC 卡

3. 本例需要的设备

A. 需要软件

STEP7 V5.2或以上版本

- B. 需要硬件
 - 1. 一个S7-300 CPU314C-2DP
 - 2. 带有CP5611的 Field PG 710
 - 3. 512K MMC 卡

4. 只在 MMC 中创建数据块

4.1 方法 1: 在 STEP7 中手动创建只存于 MMC 的数据块

打开STEP7,创建一个新的项目,在"BLOCKS"插入数据块,例如DB1,点右键打开属性窗口,选择"Unlinked",这样DB1 将只存于MMC 中。

Excellence in Automation & Drives: Siemens

SIEMENS

Family:		Version (Header): Author:	0.1
Lengths			
Local Data: Nata:	16384 butes		
Load Memory Requireme Work Memory Requireme	nt: 16476 bytes ent: 16420		
- Leaser - Source and A	in the PLC	Standard block	
DB is write-protected			

图 1

4.2 方法 2: 在程序中创建只存于 MMC 的数据块

在OB1 中调用SFC82

建DB块		
CALL "CREA REQ := LOW_LIMIT:= UP_LIMIT := COUNT := ATTRIB := SRCBLK := RET_VAL := BUSY := DB NUM :=	DBL" M0.1 W#16#2 W#16#6 W#16#4000 B#16#1 DB10.DBB0 MW2 M1.1 MW4	<pre>//为1时使能 //数据块的起始号 //数据块的起始号 //数据块的结束号 //数据块长度16K //数据块只存于MMC中 //创建DB块的初始值,在本例初始数据块第一个字节 //返回值 //为1时表示正在创建 //数据块的个数</pre>

图 2

这样M0.1 为1 时,将在MMC 中创建DB2,3,4,5,6。每个DB 块容量为16K,当MW4 等于 5 时,完成创建工作,用户应复位M0.1。


```
图 3
```

5. 读写 MMC 的数据

5.1 写数据到 MMC 卡中,调用 SFC84

CALL "WRIT_DBL"	
REQ :=M0.2	
SRCBLK :=DB10.DATE_WRITE	//数据源从DB10.DBB0~9
RET_VAL:=MW6	
BUSY :=M1.2	
DSTBLK :=P#DB2.DBX 0.0 BYTE 10	//写到MMC中DB块DB2.DBB0~9
图 4	

M0.2 为1 时, CPU 中的数据源DB10.DBB0~9 10 个字节将写到已经在MMC 中创建好的 DB2.DBB0~9 中, M1.2 为1 MW6 为W#16#7002 时, 用户将复位M0.2 。

5.2 读 MMC 中的数据到 CPU 中, 调用 SFC83

CALL "READ_DBL" REQ :=M0.3 SRCBLK :=P#DB2.DBX 0.0 BYTE 10 //在数据源从MMC DB2.DBB0~9 RET_VAL:=MW8 BUSY :=M1.3 DSTBLK :=DB10.DATE_READ //读到CPU中DB块DB10.DBB10~19

图 5

M0.3 为1 时, MMC 卡中的数据源DB2.DBB0~9 10 个字节将读到CPU DB10.DBB10~19 中, M1.3 为1, MW8 为W#16#7002 时, 用户将复位M0.3。

A&D Service & Support

附录一推荐网址

AS

西门子(中国)有限公司 自动化与驱动集团 客户服务与支持中心 网站首页: <u>http://www.ad.siemens.com.cn/Service/</u> 专家推荐精品文档: <u>http://www.ad.siemens.com.cn/Service/recommend.asp</u> AS常问问题: <u>http://support.automation.siemens.com/CN/view/zh/10805055/133000</u> AS更新信息: <u>http://support.automation.siemens.com/CN/view/zh/10805055/133400</u> "找答案" AS版区: <u>http://www.ad.siemens.com.cn/service/answer/category.asp?cid=1027</u>