FM355 PID 模块使用入门 FM355 PID Module getting start

快速入门

Edition 2006-7

摘 要 本文介绍 FM355 模块的参数化、编程及诊断,使用户可以快速达到使用的目的。

关键词 功能模块 FM355

Key Words Function module FM355

目录

1.	应用概述	4
2.	硬件安装与接线	4
3.	系统组态及参数设置	10
4.	编程	16
5.	监控、调试	25

1. 应用概述

FM355 PID 闭环控制器适合压力、流量、温度的闭环控制。在西门子软件中有多种 PID 控制器,如集成于 STEP7 的 FB41、FB42、FB43PID 控制函数;参数过程图形化、实 现手动、自动无扰切换功能的标准 PID 控制函数(需要额外购买);集成更多 PID 控制算 法、需要将不同的控制算法搭接为一个完整 PID 控制回路的模块化 PID 控制函数(需要额外 购买)等都是软件 PID 函数。PID 控制算法在 CPU 内进行,输入和输出接口可以直接指定 不同的信号模块,对于编程人员来说,有很高的灵活性,但是在控制回路较多时将占用大量 的 CPU 循环扫描时间,从而影响 CPU 快速处理能力。与软件 PID 控制函数相比,控制算法 集成于 FM355 模块中,所有 PID 控制的计算和信号采样由完成,不占用 CPU 的扫描时间, CPU 通过专用函数与 FM355 模块进行数据交换一发送命令并接收反馈信号。与软件 PID 相 比,FM355 模块还集成后援操作即在 CPU 故障停止的情况下自动切换到后援操作模式, FM355 模块将当前设定切换到在模块中预先设定的值进行 PID 闭环控制,如果 CPU 连接操 作面板,在后援操作模式下通过操作面板还可以直接对 FM355 模块控制参数进行操作,避 免 CPU 停止造成的控制过程的失控。

2. 硬件安装与接线

FM355模块可以安装于 S7-300的中央机架,也可以安装于分步式 I/O ET200M 中,在 分步式 I/O ET200M 中安装 FM355模块,由于 CPU 需要通过调用异步读写函数对 FM355 模块的数据区进行数据访问,同时调用读写函数的个数受到 CPU 资源的限制,对于 S7-300CPU,在 ET200M 中最多可以插入一个模块(4个 PID 回路),对于 S7-400 CPU,在 ET200M 中最多可以插入两个模块(8个 PID 回路)。在 S7-300CPU 中央机架模块通常可 以连接 8 个模块,具体数量可以查看 CPU 的技术规范。FM355模块划分为两种:1) FM355C,反馈信号为模拟量,控制输出也为模拟量,连续对过程进行控制;2) FM355S, 反馈信号为模拟量,控制输出为开关量,适合对一些具有开关量输入接口的过程控制器进行 控制,如大部分可控硅控制的温度控制器等。FM355C 的输入输出需要分为左右 2 个 20 针 的前连接器,端子接线参考表 1:

表 1-FM355C 端子接线									
	左边	力前连接器	L T	右边前连接器					
连接	模拟输 入	名称	功能	连接	模拟输 出	名称	功能		
1	_	_	—	1	_	L+	24V DC 电源正		
2		IC+	恒流源 (正极)	2	—	Ι1	数字输入		
3		IC-	恒流源 (负极)	3	_	12	数字输入		
4	1	M+	测量端 (正极)	4	_	13	数字输入		
5		M-	测量端 (负极)	5	_	Ι4	数字输入		
6		IC+	恒流源 (正极)	6	—	15	数字输入		
7		IC-	恒流源 (负极)	7	_	16	数字输入		
8	2	M+	测量端 (正极)	8	_	17	数字输入		
9		M—	测量端 (负极)	9	_	18	数字输入		
10	_	COMP+	补偿端 (正极)	10	—		—		
11	_	COMP-	补偿端 (负 极)	11		Q1	模拟量输出		
12		IC+	恒流源(正 极)	12	1	MANA	模拟输出 参考点		
13		IC-	恒流源 (负极)	13		Q 2	模拟量输出		
14	3	M+	测量端 (正极)	14	2	MANA	模拟输出 参考点		
15		M—	测量端(负 极)	15		Q3	模拟量输出		
16		IC+	恒流源(正 极)	16	3	MANA	模拟输出参考 点		
17		IC-	恒流源 (负极)	17		Q 4	模拟量输出		
18	4	M+	测量端 (正极)	18	4	MANA	模拟输出 参考点		
19		M-	测量端 (负极)	19	—	_	_		
20	_	MANA	模拟输入 参考点	20	_	М	24V DC 电源负		

从表 1 中可以看到 FM355C 可以连接最多 4 个模拟量输入信号作为实际值反馈、4 个模拟量输 出连接执行机构和 8 个用于 FM355C 回路参数选择的数字量输入信号。FM355S 的输入输出同 样需要分为左右 2 个 20 针的前连接器,端子接线参考表 2:

表 2-FM355S 端子接线

	左边	前连接器		右边前连接器				
连接	模拟 输入	名称	功能	连接	控制 通道	名称	功能	
1	—	_		1	—	Ľ+	24V DC 电源正	
2		IC+	恒流源 (正极)	2	_	I1	数字输入	
3		IC-	恒流源 (负极)	3	_	12	数字输入	
4	1	M+	测量端 (正极)	4	—	13	数字输入	
5		M—	测量端 (负极)	5	—	Ι4	数字输入	
6		IC+	恒流源 (正极)	6	—	15	数字输入	
7		IC-	恒流源 (负极)	7	—	16	数字输入	
8	2	2	M+	测量端 (正极)	8	_	17	数字输入
9		M-	测量端 (负极)	9	_	18	数字输入	
10	_	COMP+	补偿端 (正极)	10	_	_	_	
11	_	COMP-	补偿端 (负极)	11		Q1	数字输出 步进控制器: 输出上升信号 脉冲控制器: 输出 A	
12		IC+	恒流源 (正极)	12	1	Q2	数字输出 步进控制器: 输出下降信号 脉冲控制器: 输出 B	
13		IC-	恒流源 (负极)	13	2	Q3	数字输出 步进控制器: 输出上升信号 脉冲控制器: 输出 A	
14	3	M+	测量端 (正极)	14		Q4	数字输出 步进控制器: 输出下降信号 脉冲控制器:	

A&D Service & Support

Page 6-28

							输出 B
15		M-	测量端 (负极)	15		Q5	数字输出 步进控制器: 输出上升信号 脉冲控制器: 输出 A
16		IC+	恒流源 (正极)	16	_	Q6	数字输出 步进控制器: 输出下降信号 脉冲控制器: 输出 B
17		IC-	恒流源 (负极)	17		Q7	数字输出 步进控制器: 输出上升信号 脉冲控制器: 输出 A
18	4	M+	测量端 (正极)	18	4	Q8	数字输出 步进控制器: 输出下降信号 脉冲控制器: 输出 B
19		M-	测量端 (负极)	19	—	—	_
20	_	MANA	模拟输入 参考点	20	_	М	24V DC 电源负

从表 2 中可以看到 FM355S 可以连接最多 4 个模拟量输入信号作为实际值反馈、8 个数字量输 出连接执行机构(每个回路最多 2 个输出,如温度控制器中一个作为加热输出,一个作为冷 却输出)和 8 个用于 FM355S 回路参数选择的数字量输入信号。电压、电流、热电偶、热电阻 信号可以直接连接到 FM355 模块作为反馈信号,电压信号的接线如图 1 所示:

图1连接电压传感器

M+、M-为每个通道的输入端,连接第 20 管脚 MANA(接地端)保证信号与测量端没有电位差,如果连接非隔离传感器,则需要传感器端和 PLC 端同时接地,并保证同一个地。4 线电流(传感器电源与信号线分开)信号的接线如图 2 所示:

图 2 连接 4 线电流传感器

M+、M-为每个通道的输入端,连接第 20 管脚 MANA (接地端)保证信号与测量端没有电位差,如果连接非隔离传感器,则需要传感器端和 PLC 端同时接地,并保证同一个地。通过外部连接电阻,实际连接的信号转换为电压信号,连接的电阻随模块包装携带。如果连接 2 线电流 (传感器电源与信号线共用,传感器没有电源,FM355 模块通过 2 根测量线提供电压信号,传感器同样通过这两根信号线返回电流值)信号的接线如图 3 所示:

图 3 连接 2 线电流传感器

M+、M-为每个通道的输入端,连接第 20 管脚 MANA (接地端)保证信号与测量端没有电位 差,通过外部连接电阻,实际连接的信号转换为电压信号,连接的电阻随模块包装携带。不 能连接非隔离传感器。连接热电阻信号接线如图 4 所示:

图 4 连接热电阻传感器

M+、M-为每个通道的输入端,IC+、IC-为恒流源,FM355 模块发出恒流源信号,将热电阻产 生的电压信号作为输入信号,连接第 20 管脚 MANA (接地端)保证信号与测量端没有电位 差。连接热电偶信号接线如图 5 所示:

图 5 连接热电偶传感器一外部补偿

M+、M-为每个通道的输入端,通常热电偶信号需要冷端补偿,FM355模块使用热电阻将冷端的温度值采集到模块中动态补偿热电偶信号的偏差值。外部补偿利用FM355的第三个通道中IC+、IC-信号作为恒流源,COMP+、COMP-作为信号输入端,如果选择为外部补偿,第三个通道不能在连接热电阻信号,只能连接其他两线输入信号。在模块参数设定中也可以选择热电偶信号冷端补偿方式为内部补偿即补偿值为一固定的温度值,不能变化,连接热电偶信号内部补偿接线如图6所示:

输出信号在这里不作介绍。

3. 系统组态及参数设置

FM355 的参数化软件光盘随硬件包装携带,参数化软件以 STEP7 为平台,直接安装后, 在 STEP7 硬件配置中对 FM355 模块进行参数化。以 FM355C 为例进行参数化配置。 打开 STEP7 硬件配置界面,双击 FM355 模块,点击 "parameter…"按钮进入参数化界面如图 7 所示:

Excellence in Automation & Drives: Siemens		SIEMENS
🅰 FM 355 C		
	<u>M</u> odule Parameters	
Analog Input 1	Controller 1 Controller Type Fixed Setpoint or Cascade Inree-Component Batio or Blending Image: Control Signal Algorithm Output	Analog Output 1
•		

图 7 FM355 模块 参数化界面

在"Module Parameter"对话框中可以对 FM355 模块集成的数据量输入信号进行参数化,如 选择信号为1的条件(高电平或低电平);也可以对温度参数进行参数化,如选择温度的单 位、设定热电偶内部补偿的温度值等。在图7中可以看到一个 PID 控制回路包括过程值采样 回路、控制器回路和输出回路三个子回路,数据的流向也是从左向右经过过程值采样,然后 与设定值相减算出偏差值,再经过 PID 运算将结果通过输出信号输出到实际的控制器上。在 过程值采样回路中需要对模拟量信号进行参数化;在控制器回路中需要对 PID 的设定、偏 差、控制算法和控制器输出进行参数化;在输出回路中选择输出类型。缺省条件下相同序号 的模拟量输入、控制器和模拟量输出为一个 PID 回路。首先选择需要参数化的模拟量输入, 然后点击按钮对反馈的过程值进行参数化如图 8 所示:

图 8 FM355 模块过程值 参数化界面

下面对图 8 中对话框的功能进行介绍,

"A/D" :选择模拟量的数模转换精度,精度高将影响整个模块对过程值的采样时间;

"Sensor":选择模拟量输入连接的传感器类型;

"Filter":设定模拟量滤波时间,抑制高频信号对输入信号的干扰,缺省状态

为关;

"Square Root":对输入信号开平方;

"Polyline":对非线性的传感器信号进行差补,如在 "Sensor" 对话框中选择 "Free thermocouple type" 类型传感器,选择确定类型的传感器已

经对输入信号的特征曲线进行处理,不需要差补运算;

"Normalize" : 对输入信号进行标么。

如果使用外部温度补偿则需要选择"Reference Input",如果使用内部温度补偿则需要选择"Parameters"。

过程值信号参数化完成后进入控制器回路,选择需要配置的控制器和控制器类型,选择不同 类型的控制器将影响设定和反馈的关系即偏差的计算,如选择"Three-Component"类型控制 器,最多可以将三个模拟量输入值叠加作为一个 PID 回路的反馈值。缺省值为具有固定设定 点和串级功能的控制器,点击偏差按钮进入参数化界面如图 9 所示:

图 9 FM355 模块偏差 参数化界面

下面对图 9 中对话框的功能进行介绍,

```
"Setpoint"
                :选择 PID 设定点的来源,三个选择:1)功能块;2)预处理
的模拟量输入: 3) 控制器输出。缺省配置为命令源来自 CPU。
"Switch Safety Setpoint":对后援操作(CPU处于停止状态)中设定点的设置;
"Ramp"
                : 对设定值进行斜坡处理, 防止设定产生大的阶越, 引起输出
震荡;
"Limit"
                : 对设定点进行线形化和限幅;
"Actual value A"
                :选择过程值通道;
"D input"
                :选择微分的方式:1)将偏差值进行微分;2)将过程值
取反进行微分; 3)将其它模拟量采集值进行微分,通
过修改通信函数块 FM_PID 中 D_EL_SEL 参数(背景数据块地址为 74)也可以在线修改;
"Alarm"
                : 对实际值或偏差值进行监控,设定高低限报警和警告值;
"Disturbance Variable" : 选择扰动变量的采样通道即通过第几个模拟量输入采样扰动
变量。
设定值与实际值的差值为偏差值,偏差值在控制算法中进行计算,点击"Control
```

Algorithm"进入控制算法界面如图 10 所示:

图 10 FM355 模块控制算法参数化界面

在控制算法界面中可以选择两种算法: 1) 温度算法; 2) PID 算法。在温度算法中可以选择 加热或制冷控制和控制的活波性(识别过程的速度),温度算法集成优化的温度控制,控制 非常简单,只需要在 CPU 中调用功能块识别控制过程一次后,将识别后生成的值存储于数据 块中即可,而不需要温度控制的经验参数,但是温控算法没有开放,在一些情况下不能使 用,如由于测温元件安装问题或控制器机械问题往往不能识别控制过程;采用 PID 算法,在 一些过程控制中需要具有经验参数,偏差值经过"Dead Band"死区处理后,只有超出在死区 中设定的值后才进入 PID 控制器计算,在"PID"中可以选择控制方式如 PI、PD、PID 控制, 并可以设定手自动无扰切换等参数。

点击 "Controller Output" 按钮进入控制器回路输出界面如图 11 所示:

图 11 FM355 模块控制回路输出参数化界面

下面对图 11 中对话框的功能进行介绍,

"External Manipulate Value" : 通过 CPU 调用通信函数块或通过调用通信函数块与 集成输入信号的"与"结果选择控制器手动或自动输出,手动操作时需要在 CPU 中对输出赋 值;

"Follow-Up input"	: 跟随模式输入,选择零值或经过处理的模拟量输入
直接作为控制器输出, 防止手自动切换时	寸输出产生阶越;
"Switch Correction"	: 可以通过程序或集成的数字输入信号选择输出源;
"Switch Safety Manipulated Value"	: 可以通过程序或集成的数字输入信号选择定义的
后援操作(CPU 处于停止状态)输出;	
"Limit"	: 对控制器输出值进行限幅;
"Split Range"	: 将一个控制器输出值按输入输出范围分成两个输
出值并分别输出到不同的输出接口,输入	\的开始值必须小于结束值。

在输出回路中选择控制器输出接口,在 FM355S 中数字量的输出端口是固定的,不需要选择, 在 FM355C 中为控制器选择使用第几个模拟量输出以及输出的类型如电压信号或电流信号。参 数化完成后编译存盘结束参数化过程。

4. 编程

在 CPU 中调用通信函数块,可以对 FM355 的参数进行设定并读出反馈值,

安装 FM355 模块驱动软件后,在 STEP7 的函数库中将新增 FM355 的函数 "FM_PID",库中包括7个函数,它们的功能互有区别。下面简单介绍各个函数的功能,

"PID_FM"函数块 : 主函数块,对大部分参数可以进行修改,将设定点发送到 FM355 模块 并读回反馈值;

"FUZ_355"函数块 : 读出 FM355 模块利用温度优化算法整定后的结果,如果更换模块后不需要再次对控制过程进行整定,只需要将读出的结果下传到模块即可。

"FORCE_355"函数块:模拟模块集成的模拟量和数字量输入信号。

"READ_355"函数块: 将模块集成的模拟量和数字量输入信号读到 CPU 中。

"CH_DIAG"函数块 : 读出指定通道的状态值和一些 PID 控制回路的中间量值,用于对过程的判断。

"PID_PAR" 函数块 : 对 "PID_FM" 函数块不能操作的参数进行操作,例如更改线条差补 "Polyline" 对话框中的数值。

"CJ_T_PAR"函数块: 在线更改内部补偿的温度值。

在模块参数化过程中设定的数值及选择在模块初始化过程中(通过调用 PID_FM 函数,置位 COM_RST,将 FM355 模块的参数读到 CPU 中)将作为 PID 控制回路的初始值,通过调用通信函数可以在控制过程中时时修正控制参数以适应控制过程的变化,但是在 CPU 从起过程中,修改的参数将被存储于 CPU 中的系统数据块覆盖。

以软件自带的例子介绍 FM355 模块的编程,安装 FM355 模块参数化软件后,在 STEP7

"Sample project" 例子程序目录下可以发现 FM355 的例子程序"FM_PIDEx",例子程序中 FB100 对控制过程进行模拟并反馈值通过 FC101 模拟到模拟量输入 1 中,对熟习模块的控制 有很大的帮助,在实际的控制中将程序中 FB100 和 FC101 删除即可,主程序在 FC100 中编 写,然后在 0B100 调用一次进行初始化,在 0B35 中循环调用与 FM355 模块进行数据交换,程 序如图 12 所示:

Excellence in Automation & Drives: Siemens		SIEMENS
	OB35中循环调用程序 CALL FC 100 COM_RST:=FALSE CYCLE :=T#100MS BE	
	OB100中初始化程序 CALL FC 100 COM_RST:=TRUE CYCLE :=T#100MS BE	

图 12 FM355 模块循环调用和初始化程序

在 OB100 中置位 "COM_RST" 参数,将存储于模块中所有控制参数读到 CPU 中,完成之后模块 自动复位 "COM_RST" 参数,在 OB35 中不需要再次进行初始化,时间参数模拟实际过程响应 与控制无关,在实际操作中应删除。

在函数 FC100 中首先对 PID 回路进行初始化,控制程序如图 13 所示:

	A S S	#COM_RST DB31.DBX DB31.DBX	44.0 56.4	//FM355模块com_rst位 //切换到手动模式
	L SF A JCN	S5T#1S T 1 T 1 MOO1		//延时1秒跳转
	L T	0.000000e+ DB31.DBD	000 52	//将手动值设置为0
M001:	A R SET	DB31.DBX DB31.DBX	40.4 56.4	//手动模式反馈信号 //切换到端子
	S S	DB31.DBX DB31.DBX	44.2 44.1	//将FM355模块过程变量读到CPU中 //将操作变量写到FM355模块

图 13 FM355 函数 FC100 PID 回路初始化程序

在回路初始化程序中,初始化命令(COM_RST)将 FM355 模块的参数读到 CPU 中并切换到手动模式输出零值,保证过程在启动时不会产生震荡,初始化命令执行完成 COM_RST 和

DB31.DBX44.0 自动复位并切换到自动控制模式,通过置位 DB31.DBX44.2 和 DB31.DBX44.1 对 模块进行读写操作,每次读写完成后模块将读写为复位,所以必须循环(OB35 缺省 100 毫 秒)置位读写位(如果没有置位读写操作,CPU 与 FM355 模块的通信将自动通过 FM355 的逻辑 地址完成,通信时间需要 2~3 个 CPU 扫描周期)可能。在后续的程序中必须直接调用函数 "FM_PID"(FB31)并生成背景数据块 DB31,选择模块地址和 PID 通道号与 FM355 模块建立 通信关系,否则初始化程序无效。每一个 PID 回路都需要通过 FB31 建立一个独立的背景数据 块,在背景数据块中有三种数据类型:1) 输入数据类型如表 3 所示,

表	3	PID	FM	函数背景数据快输)	\ 参数
1X	J		1.141	凹双日尔双顶灯肋/	、シヌ

地址	参数	数据 类型	描述	取值 范围	缺省值	解释	参数 对话 框
0.0	MOD_ADDR	INT	FM 355/455 模块地址		256	模块逻辑地址	-
2.0	CHANNEL	INT	通道号	1至4	1	指定背景数据块存 储第几个 PID 回路 参数	-
4.0	PHASE	INT	PID 自整定 控制器的相 位	没有配 置	0	与 PID 自整定函数 (需单独购买) "PHASE"连接	_

2) 输出数据类型如表 4 所示,

地址	参数	数据 类型	描述	取值 范围	属性	解释	参数 对话 框
6.0	RET_VALU	INT	SFC 58/59 返回值		0	如果模块故障 (QMOD_F)可以评 估故障信息	-
8.0	out_par	WORD	模块输出参 数起始标识	W#16#3 130	W#16#3 130	通过 READ_VAR=1 读 出模块输出信息	-
10.0	SP	REAL	设定值	工艺参 考数值 范围	0.0	PID 设定值反馈信 号。用于监控	_
14.0	PV	REAL	过程变量	工艺参 考数值 范围	0.0	PID 过程值反馈信 号,用于监控	_
18.0	ER	REAL	偏差信号	工艺参 考数值 范围	0.0	偏差值反馈信号	-
22.0	DISV	REAL	扰动变量	 100. 0 	0.0	扰动值反馈信号	-

表 4 PID_FM 函数背景数据块输出参数

A&D Service & Support

Page 18-28

				100.0			
				(%)			
26.0	LMN	REAL	输出变量	- 100.0 100.0 (%)	0.0	PID 输出反馈信号	_
30.0	LMN_A	REAL	Split range 功能输出 A	- 100. 0 100. 0 (%)	0.0	PID 输出 A 反馈信 号	_
34.0	LMN_B	REAL	Split range 功能输出B	- 100. 0 100. 0 (%)	0.0	PID 输出 B 反馈信 号	_
38.0	QH_ALM	BOOL	过程值高限 报警		FALSE	过程值超出 H_ALM 参数设定的监控值	-
38.1	QH_WRN	BOOL	过程值高限 警告		FALSE	过程值超出 H_WRN 参数设定的监控值	-
38.2	QL_WRN	BOOL	过程值低限 警告		FALSE	过程值超出 L_WRN 参数设定的监控值	-
38.3	QL_ALM	BOOL	过程值低限 报警		FALSE	过程值超出 L_ALM 参数设定的监控值	-
38.4	QLMN_HLM	BOOL	输出值高限 报警		FALSE	设定输出值的高低 限,该位指示输出 超出设定的高限值	-
38.5	QLMN_LLM	BOOL	输出值低限 报警		FALSE	设定输出值的高低 限,该位指示输出 超出设定的低限值	-
38.6	QPARA_F	BOOL	模块参数错 误		FALSE	模块检查参数的有 效性,该位指示参 数是否出错,详细 信息可以通过调试 工具中 PLC- >Parameter Assignment Error 查看	_
38.7	QCH_F	BOOL	通道错误		FALSE	指示控制器故障, 详细信息通过诊断 数据记录区 DS1 读 出(调用 SFC59)	-
39.0	QUPRLM	BOOL	斜坡功能		FALSE	对设定值设置斜坡 功能,该位指示经 过斜坡时间后向上 达到设定值	_
39.1	QDNRLM	BOOL	斜坡功能		FALSE	对设定值设置斜坡 功能,该位指示经	_

A&D Service & Support

Page 19-28

					过斜坡时间后向下 达到设定值	
39.2	QSP_HLM	BOOL	达到设定值 上限	FALSE	设定值的高低限, 该位指示输出超出 设定的高限值	_
39.3	QSP_LLM	BOOL	达到设定值 下限	FALSE	设定值的高低限, 该位指示输出超出 设定的低限值	-
39.4	QLMNUP	BOOL	正向控制信 号	FALSE	步进控制器和脉冲 控制器正向控制信 号	_
39.5	QLMNDN	BOOL	反向控制信 号	FALSE	步进控制器和脉冲 控制器反向控制信 号	_
39.6	QID	BOOL	温度识别过 程运行	FALSE	指示识别过程运行	_
40.0	QSPOPON	BOOL	设定值操作 开关显示	FALSE	指示是否使用调试 工具输出设定值, 如果该位为1,参 数 SP_0P 作为设定 值输出(调试工具 和程序设定相同)	_
40.1	QLMNSAFE	BOOL	后援操作	FALSE	指示后援操作(CPU 处于停止状态)是 否输出	_
40.2	QLMNPON	BOOL	输出值操作 开关显示	FALSE	指示是否使用调试 工具设定输出值, 如果该位为1,参 数LMN_OP作为输出 (调试工具和程序 设定相同)	-
40.3	QLMNTRK	BOOL	跟踪操作	FALSE	指示输出值是否与 设定的模拟量输入 相匹配	_
40.4	QLMN_RE	BOOL	手动=1 自动=0	FALSE	指示手自动操作状 态	-
40.5	QLMNR_HS	BOOL	步进控制 (FM355S)	FALSE	指示控制的阀门在 高限位停止	-
40.6	QLMNR_LS	BOOL	步进控制 (FM355S)	FALSE	指示控制的阀门在 低限位停止	-
40.7	QLMNR_ON	BOOL	输出指示 (FM355S)	FALSE	指定步进控制器设 定的模式	-
41.0	QFUZZY	BOOL	PID 算法=0 温度算法=1	FALSE	指示选择的控制算 法	-
41.1	QSPLEPV	BOOL	温度控制显 示:设定值 小于过程变 量	FALSE	温度控制算法被选 择,当前设定值小 于过程变量	-

41.2	QSPR	BOOL	Split range 操作	FALSE	指示是否使用 Split range 功能	-
41.4	QMAN_FC	BOOL	串级 PID 回 路操作	FALSE	主回路受控二级回 路手动操作或由于 二级回路设定或输 出值受限幅控制而 暂停主回路积分部 分	_
41.7	QPARABUB	BOOL	内部变量	FALSE	指示操作参数是否 通过配置工具改变	_

3) 输入/输出数据类型如表5所示,

表 5 PID_FM 函数背景数据块输入/输出参数

地址	参数	数据 类型	描述	取值 范围	属性	解释	参数 对话 框
44.0	COM_RST	BOOL	从 FM 355/455 读 取控制参数		FALSE	如果 COM_RST=TRUE 模块执行一次初始 化过程,将模块的 参数读到 CPU 中, 完成后复位 COM_RST 参数	_
44. 1	LOAD_OP	BOOL	将操作参数 到下传 FM 355/455 模 块中		FALSE	如果参数被置位, 操作参数下传到模 块中并复位该参数	_
44. 2	READ_VAR	BOOL	从 FM 355/455 读 取变量		FALSE	如果参数被置位, 读取模块输出参数 并存储到背景数据 块中,完成后复位 该参数	_
44. 3	LOAD_PAR	BOOL	将控制参数 到下传 FM 355/455 模 块中		FALSE	如果参数被置位, 控制参数下传到模 块中并复位该参数	_
46.0	OP_PAR	WORD	操作参数的 开始位置	W#16#3 130	W#16#3 130	操作参数标识符, 指示下面的参数为 操作参数	-
48.0	SP_RE	REAL	外部设定值	工艺参 考数值 范围	0.0	PID 的设定值	_
52.0	LMN_RE	REAL	外部输出变 量	- 100. 0 100. 0	0.0	手动输出值	_

A&D Service & Support

Page 21-28

				(%)			
56.0	SP_OP_ON 1)	BOOL	通过配置工 具选择设定 值开关		FALSE	是否选择调试工具 输出设定值,如果 该位为1,参数 SP_OP作为设定值 输出(调试工具和 程序设定相同	-
56.1	SAFE_ON	BOOL	安全操作开 关		FALSE	指示后援操作值作 为操作值输出	-
56.2	LMNOP_ON 1)	BOOL	通过配置工 具选择输出 值开关		FALSE	是否选择调试工具 设定输出值,如果 该位为1,参数 LMN_OP 作为输出 (调试工具和程序 设定相同)	-
56.3	LMNTRKON	BOOL	跟踪操作 (LMN 取模 拟输入值)		FALSE	模块集成模拟量输 入作为输出信号	_
56.4	LMN_REON	BOOL	手动操作模 式开关		FALSE	选择手动模式, 通过 LMN_RE 直接输 出	-
56.5	LMNRHSRE	BOOL	步进控制 (FM355S)		FALSE	指示控制的阀门在 高限位停止	-
56.6	LMNRLSRE	BOOL	步进控制 (FM355S)		FALSE	指示控制的阀门在 低限位停止	_
56. 7	LMNSOPON 1)	BOOL	通过配置工 具选择输出 值开关(步 进控制)		FALSE	如果置位, LMNUP_OP和 LMNDN_OP可以作为 输出信号	
57.0	LMNUP_OP 1)	BOOL	输出信号		FALSE	与LMNSOPON 相关	-
57.1	LMNDN_OP 1)	BOOL	输出信号		FALSE	与LMNSOPON 相关	-
57.3	LMNRS_ON	BOOL	输出仿真		FALSE	模拟控制阀门的位 置信号	-
57.4	FUZID_ON	BOOL	温度算法, 开始过程识 别		FALSE	过程识别开始,完 成后需用户复位	_
58.0	SP_0P 1)	REAL	设定值操作	技 参 道 范 制 理 (変 量)	0.0	如果参数 SP_OP_ON 为 1,该参数作为 设定点。在调试工 具上设定值相连。	_
62.0	LMN_OP 1)	REAL	操纵变量状 态	- 100.0 100.0 (%)	0. 0	如果参数 LMN_OP_ON 为 1, 该 参数作为输出值。 在调试工具上输出 相连。	-

A&D Service & Support

Page 22-28

66.0	LMNRSVAL	REAL	仿真中输出 的初始值	- 100.0 100.0 (%)	0. 0	只适合没有位置反 馈的步进控制	_
70.0	CONT_PAR	WORD	控制参数的 开始位置	W#16#3 130	W#16#3 130	控制参数标识符, 指示下面的参数为 操作参数	-
72.0	P_SEL	BOOL	使能比例功 能		TRUE	PID 算法中,P、 I、D 分量可以单独 使能	PID 控制 器
72. 1	PFDB_SEL	BOOL	比例值作为 PID 算法的 反馈		FALSE	如果该参数置位,P 分量可以作为 PID 算法的反馈	PID 控制 器
72.2	MONERSEL	BOOL	监控: 过程变量=0 错误信号=1		FALSE	选择监控偏差信号 或过程值信号的限 幅值	报警 控制 器
74.0	D_EL_SEL	INT	控制器 D 分 量输入	0至4 或17	0	选择将哪些值进行 微分处理, 0:偏差信号; 1~4:模拟量输入 1~4; 17:过程值取反	偏信() () () () () () () () () () () () () (
76.0	SP_HLM	REAL	设定值高限	>SP_LL M (物理 变量)	100. 0	设定设定值高限	设定 值限 相 器
80. 0	SP_LLM	REAL	设定值低限	<sp_hl M (物理 变量)</sp_hl 	0. 0	设定设定值低限	设定 值限 控 器
84.0	H_ALM	REAL	高限报警	>H_WRN (物理 变量)	100. 0	与参数 MONERSEL 有 关,设定偏差信号 或过程值高限报警 值	警报 控制 器
88.0	H_WRN	REAL	高限警告	H_ALM L_WRN (物理 变量)	90.0	与参数 MONERSEL 有 关,设定偏差信号 或过程值高限警告 值	警报 控制 器
92. 0	L_WRN	REAL	低限警告	H_WRN L_ALM	10.0	与参数 MONERSEL 有 关,设定偏差信号 或过程值低限警告	警报 控制 器

A&D Service & Support

Page 23-28

				(物理 变量)		值	
96. 0	L_ALM	REAL	低限报警	<l_wrn (物理 变量)</l_wrn 	0. 0	与参数 MONERSEL 有 关,设定偏差信号 或过程值低限报警 值	警报 控制 器
100.0	HYS	REAL	时滞	>=0.0(物理变 量)	1.0	设定时滞值减少报 警信号的抖动	警报 控制 器
104. 0	DEADB_W	REAL	死区带宽	>=0.0(物理变 量)	0. 0	设定死区带宽,偏 差值在死区带宽 内,控制器不进行 计算	死区 控制 器
108.0	GAIN	REAL	比例增益	所有数 值(非 复数)	1.0	设定比例增益	PID 控制 器
112.0	TI	REAL	触发时间 积分时间 (秒)	=0.0 或者 >=0.5	3000. 0	设定的积分时间	PID 控制 器
116.0	TD	REAL	微分时间 (秒)	=0.0 或者 >=1.0	0. 0	设定的微分时间	PID 控制 器
120.0	TM_LAG	REAL	微分作用中 的时间滞后	TM_LAG >=0. 5	5.0	设定的微分滞后时 间	PID 控制 器
124.0	LMN_SAFE	REAL	后援操作变 量	- 100.0 100.0 (%)	0.0	设定的后援操作输 出值	后援 输出 值控 制器
128.0	LMN_HLM	REAL	输出值高限	LMN_LL M···· 100.0(%)	100. 0	设定输出值高限	输出 限幅 值控 制器
132.0	LMN_LLM	REAL	输出值低限	- 100.0 LMN_HL M (%)	0.0	设定输出值低限	输出 限 值 控 制器
136.0	MTR_TM	REAL	电机输出变 量(秒)	MTR_TM >=0.00 1	60.0	阀门开关的运行时 间(只适合步进控 制器)	脉冲 发生 器

140.0	PULSE_TM	REAL	最小脉冲时 间(秒)	>=0. 0	0. 2	防止控制设备的抖 动而设定最小脉冲 时间(只适合步进 控制器或脉冲控制 器)	脉发器程脉发器 分/冲生器
144. 0	BREAK_TM	REAL	最小脉冲间 隔时间 (秒)	>=0. 0	0. 2	防止控制设备的抖 动而设定最小脉冲 间隔时间(只适合 步进控制器或脉冲 控制器)	脉发器程脉发器

在输入/输出类型中从参数"op_par"(地址 46.0)到参数"cont_par"(地址 70.0)为操 作参数,如 PID 回路的设定点、手动输出等,参数"cont_par"以后为控制参数,如比例参 数、积分参数等。参数的传递通过控制位完成,控制位功能如下,

1) "COM_RTS" (地址 44.0): 在 CPU 初始化过程中将存储于 FM355 模块的控制参数值读到 背景数据块中,完成后模块将该位复位;

2) "LOAD_OP" (地址 44.1): 为1时,将操作参数传送到 FM355 模块中,完成后模块将该 位复位;

3) "READ_VAR" (地址 44.2): 为1时,将输出类型参数读到背景数据块中,完成后模块 将该位复位;

4) "LOAD_PAR" (地址 44.3): 为1时,将控制参数传送到 FM355 模块中,完成后模块将 该位复位。

在实际编程中,自动模式下背景数据块参数"SP_RE"(地址 48.0)作为 PID 回路的设定 点,"PV"(地址 14.0)作为实际反馈值,参数"LMN"(地址 26.0)以百分比的形式作 为输出值(作为用户参考值)并自动输出到模拟量输出端口;在手动模式下,参数 "LMN_REON"(地址 56.4)或通过模块集成的数字输入点作为手动模式的选择开关,参数 "LMN_RE"(地址 52.0)作为手动的输出值。

5. 监控、调试

FM355 模块带有参数化配置工具,在编程中,每一个 PID 回路需要占用一个 FB31 的背 景数据块,通过调试软件打开 PID 回路相对应的数据块,可以进行参数的调试,在 FM355 模

块参数化界面中点击菜单"Test"->"Loop Monitor" ->"Open Instance DB"选择 PID 回路的背景数据块,进入参数界面如图 14 所示:

图 14 FM355 回路监控监控界面

在回路参数可以监控设定、反馈和输出的值,并可以通过调试界面对设定进行赋值、切换到 手动模式输出。

点击菜单"Test"->"Curve Recorder" ->"Open Instance DB" 选择 PID 回路的背景 数据块可以参考 PID 回路操作参数曲线,如同 15 所示为 PID 回路设定、反馈和输出值曲线:

图 15 FM355 参数曲线界面

通过柱状图和曲线图可以对 PID 回路进行监控,如果需要修改 PID 的控制参数,在配置界面中可以直接修改并下传到 FM355 模块中。

附录一推荐网址

西门子(中国)有限公司 自动化与驱动集团 客户服务与支持中心

网站首页: <u>http://www.ad.siemens.com.cn/Service/</u>

专家推荐精品文档: <u>http://www.ad.siemens.com.cn/Service/recommend.asp</u>

AS常问问题: http://support.automation.siemens.com/CN/view/zh/10805055/133000

AS 更新信息: <u>http://support.automation.siemens.com/CN/view/zh/10805055/133400</u> "找答案" AS 版区:

http://www.ad.siemens.com.cn/service/answer/category.asp?cid=1027