SIMATIC S1-300/400 PLC 的设计应用实例

3 个实际控制系统为例,说明 Profibus 控制系统的组成和基本应用。包括硬件结构,组态编程软件 STEP7、监控软件 WinCC 的使用;基于 PC 的 PLC 控制系统软件 WinAC 的使用;基于 Profibus 的现场总线 控制系统组成。

第一节 Profibus 现场总线控制网络

一. 实验室控制网络组成

如图 1-1 所示,实验室控制网络以工业以太网为界分为两层,即监控层和控制层。监控层主要包括工程师站(工业 PC)、监控站和服务器等二类主站;控制层包括一类主站(3 台 S7400,2 台 S7300)、各个从站(分布式 I/O ET200、变频器等)和现场设备等,他们之间构成了现场总线控制系统。通过以太网,S7300、S7400 等一类主站与监控站、工程师站及服务器等二类主站连接。

图7-1 现场总线控制网络组成

二. 系统硬件组成

1. 一类主站

选用德国西门子公司生产的 SIMATIC S1-300/400 可编程控制器。SIMATIC S1-300/400 可编程控制器 采用模块化设计,在一块机架底板上可安装电源、CPU、各种信号模板、通信处理器等模块,其中 CPU 上有一个标准化 MPI 接口,它既是编程接口,又是数据通信接口,使用 S7 协议,通过此接口,PLC 之间 或者与上位机之间都可以进行通信,从而组成多点 MPI 接口网络。S1-300/400 可编程控制器通过 I / O 模 块采集相关数据和发出控制信号, I / O 模块与 S1-300/400 可编程控制器之间通过 PROFIBUS 现场总线通 信。

2. 二类主站

PC 计算机或工控机都可以作为二类主站。二类主站主要用于控制系统程序的编写和系统运行过程中的实时监控,如工程师站和监控站等。通常工程师站装有 SIMATIC STEP7 组态编程软件和 SIMATIC WINCC 监控组态软件。

3. 从站

系统从站包括分布式 I/O ET200,变频器和通过 DP/PA LINK 连接的智能从站等。

4.被控对象

主要有三容水箱液位控制实验装置;双输入双输出电加热炉温度控制实验装置;模拟锅炉过程控制实验装置;带式链条输送机等。

第二节 基于 Profibus 的三容水箱液位控制系统设计

一. QXLTT 三容水箱实验装置介绍

QXLTT 三容水箱液位控制实验装置是一台具有多个输入和多个输出的非线性耦合被控物理模型,它的 主体是用透明的有机玻璃制成的三个圆形容器罐和一个蓄水池,并配以相应的执行机构和传感器组成。如 图 1-2 所示,有二个水泵 P1 和 P2,六个手动阀 V1~V6,二个 PWM(脉宽调制)型线性比例调节阀 V7 和 V8; 三个反压式液位传感器 LT1、LT2 和 LT3 以及两个旁路阀 V9、V10 组成。

(a) 三容水箱控制实验装置容器罐和蓄水池

(b) 三容水箱控制实验装置组成结构

图 1-2 三容水箱实验装置

三个圆柱型容器为串联连接,蓄水池中的液体由泵 P1 和 P2 抽出注入容器 T1、T2 以改变 T1 和 T2 的液位,液体经手动阀 V3 再流向蓄水池形成循环。改变手动调节阀 V1 和 V2 的开度,便可改变三个容器 T1、T2 和 T3 液位的关联关系(即改变三个容器中液位的耦合程度)。而调节手动阀 V4、V5 和 V6 则可模拟系统的扰动,改变系统的传递函数。系统输入参数有三个,分别是三个容器的液位值;系统的输出参数有两个,是两个电磁阀的开度。

设计一个双容液位控制系统,即蓄水池中的液体由泵 P1 抽出注入容器 T1,液体经手动阀 V1 流到容器 T2,再经过手动阀 V5 流向蓄水池形成循环,受控的是容器 T2 的液位。

二、双容水箱液位控制系统组成及原理

该系统中用到的 S1-300PLC 由 CPU 模块(集成有输入输出模块)、机架、CP 模块组成。S1-300PLC 的 CPU 集成有 24 点 DI(数字量输入)、16 点 DO(数字量输出)、5 路 AI(模拟量输入)和 2 路 AO(模 拟量输出)。

如图 1-3 所示,液位控制系统的工作过程为:

图 1-3 液位控制系统原理图

1. 信号采集

将三支反压式液位传感器的变送信号接至 AI 模块的模拟输入通道 1、通道 2 和通道 3,在 AI 内部经 A/D 转换成一定范围的十进制数据。如 4mA~20mA 电流输入在标称范围内对应的转换结果是 0~27648, 用户程序可以根据输入通道对应的端口地址获取转换结果。

2. 信号处理

在控制器模块中对实际采样信号进行量程转换,根据该液位值和设定液位值,应用某种控制算法得到 控制量,并进行相应的反量程转换后输出。

3. 控制信号输出

AO 模块可以输出电压和电流两种类型的信号,在本例中选用输出电流信号。AO 模块的模拟量输出 通道1和通道2接至线性比例电磁式调节阀,使阀门随输出的控制量连续变化,最终实现液位的闭环控制。

图 1-4 为液位单回路控制方块图, 被控量为 2#容器的液位 T₂。控制量是 1 通道的电磁阀开度。控制器 采用 PID 算法实现。

图 1-4 液位单回路控制系统方块图

三、系统网络及硬件组态

1. 通信端口设置

打开控制面板,双击 Set PG/PC Interface,设置编程设备和控制器的通信接口,如图 1-5 所示。

STONLINE (STEP 7)> ISO	Ind. Ethernet -
Standard for STEP 7)	
nterface <u>P</u> arameter Assignment	
SO Ind. Ethernet -> Realtek RTL8	P <u>r</u> operties
None>	Diagnostics
ISO Ind. Ethernet -> Realter	
PC internal (local)	Lop <u>y</u> .
TCP/IP -> NdisWanIp	Delete
Assigning Parameters to Your NDIS P with the ISO Protocol)	
Interfaces	
Add/Remove:	Select

控制面板中设置: Set PG/PC Interface 中选中 S7 Online (STEP7) →ISO and Ethernet。这样,工程师站 和 S7300 间就可以通过工业以太网进行通信连接。

2. 网络及硬件组态

(1) 创建项目

进入 STEP-7, 弹出创建向导, 创建一个项目并命名"液位控制"。 然后插入一个 S7300 站, 如图 1-6 所示, 并进入硬件组态 "Configuring Hardware"界面。

📕 SIMATIC Manager - 🕷	位控制
<u>File Edit Insert PLC View</u>	# Options ∭indow Help
	S S S S S S S S S S S S S S S S S S S
🖹 液位控制 — E:\任俊烈	&\\实验\组态项目\S7-300(三容液位控制)
田 🎒 液位控制	I SIMATIC 300(1) SIMATIC 300(1)

(2) 配置机架

点开右侧的硬件资源,从 RACK-300 中选择机架。如图 1-7 所示。

(3) 配置模块

分别从 SIMATIC300 的 CPU 和通信信号(CP) 模块中选择相应的模块插入机架的相应槽中。各模块型 号如下:

① CPU314C-2DP 6ES7 314-6CF00-0AB0

集成有 DI 8×DC24V, AI5/A02×12Bit, DI16/D016×DC24V。

地址: DI I124.0~126.7;

- DO Q124. 0~125. 7;
- AI PIW752~761;
- AO PQW752~755;

设置 AI、AO 模块特性为电流 4~20mA。

(2) **CP343** 6ES7 343-1EX11-0XE0

设置 MAC 地址(按标签上的物理地址)为 08-00-06-71-49-25, 如图 1-8 所示。

(4)保存硬件配置:点击保存并编译。配置好的网络如图 1-9 所示。

(5) 下载硬件配置到 PLC。

点击下载到 S7300 CPU 观察机柜上各个模块的指示灯是否显示正确。如果被组态的模块的指示灯点亮 绿灯,证明组态配置正确;如果被组态的模块的指示灯点亮红灯,证明组态存在错误,请检查模块型号、 订货号、主站和从站的地址等是否选择和设置正确。

5

图 1-6 创建项目

🖳 HA (Config - [SIMATIC	300(1) (Configurati	on)	液位	空制]				
00 Stat	ion Edit Insert PLC	View Options Window He	lp						
	a * * io C *								-
(0)	UR							^	Profi Standard
1	[CINE STRATTC 300
2	CPU 314C-2 DP								
82	DT24/0016						_		🗄 🧰 CP-300
2.2	DI24/DU10						-		😑 🧰 CPV-300
2.5	Launt						-		🛨 🧰 CPV 312
25	Position						-		🕀 🧰 CPV 312 IFM
3							-		🕀 🔁 CPV 312C
4	L CP 343-1						-		🕀 🔁 CPV 313
5								~	🗄 🛄 CPV 313C
<								>	
									- E CPU 313C-2 PtI
	(0) UR								+ CPU 314
		1 Sector Contractor	1000	1.555	1.22		1000		
S	Module	Order number	Firm	M	I	Q	Comment		± ⊆ CPU 314C-2 DP
1									
	CPU 314C-2 DP	6ES7 314-6CF00-0AB0	¥1.0	2					
82	JP DERAKONKA			-	1023	100			
2.2 	D124/D016		-	-	124.	124			
	A157A02		-	-	152.	152.			
4.9			-	-	700.	204			E CPU 318-2
4.3	10511100		-	-	104.	104			
	1_CNC 071	6CF7 242-1FV11-0VF0	1/2 0	2	056	256			н 🧰 CPV M7
	1 043 1	OGRI 545 TEXTI ONEO	92.0		230	230			FM-300
6			-	-	-	k			🕂 🧰 Gateway
7			1	-	-	¢			🛨 🧰 IM-300
			-	-	-				🕂 🧰 M7-EXTENSION
9					-	k (*			😟 🧰 PS-300
10			1	-	-	<u>, , , , , , , , , , , , , , , , , , , </u>			📄 🧰 RACK-300
11			1		-	-			E Rail

图 1-7 硬件组态

Properties - Ethernet interface	CP 343-1 (R0/S4)
General Parameters	
MAC address: 08-00-06-71-49-25	
🔽 IP protocol is being used	
<u>I</u> P address: 140.80.0.1 Su <u>b</u> net mask: 255.255.0.0	Gateway Do not use router <u>V</u> se router <u>A</u> ddress: 140.80.0.1
Subnet:	
not networked Ethernet(1)	<u>N</u> ew
	Properties
	De <u>l</u> ete

图 1-8 设置 MAC 地址

Ethernet(1) Industrial Ethernet		
MPI(1) MPI		
	 1	
		C 300(1)
	2 2	

图 1-9 网络组态结果

四、实现 S7300 液位控制功能

(一) 控制程序组态

1. 在 S7 Program 的 Blocks 中建立程序块 FC1、0B35、FC2, 如图 1-10 所示。

FC1 块实现液位信号的输入量程转换,将 0-27648 之间的数字量转换为 0-500mm 之间的液位实际值。

OB35 为循环中断组织块,可以按照固定的时间间隔循环调用 PID 程序块,本例为采样时间 100ms。循环中断时间可以在 CPU 的特性里进行设定,如图 1-11 所示。

FC2 块实现输出操作信号的量程转换,将 0.0-100.0 之间的实型值转换为 0-27648 之间的数字量。

◎ 液位控制 E:\rjj\液位控制										
□-臺 液位控制 □-圖 SIMATIC 300(1) □-圖 CPU 314C-2 DP □-圖 S7 Program(1) □-圖 Sources □-圖 Blocks 	System data - FC1 - DB41	;, 0B1 ;, FC2	⊕ 0035 € FC105 €	등 FB41 등 FC106						
	F () ()									

图 1-10 填加程序块

DP General Startup Cycle/Clock Memory Retentive Memory DI24/D016 Interrupts Time-of-Day Interrupts Cyclic Interrupts AIS/A02 Interrupts Process image Process image Image: Startup Priority Execution (ms) Phase offset (ms) Process image Image: Startup 0830: 7 5000 0 081 PI I Image: Startup 0832: 9 1000 0 081 PI I Image: Startup 0832: 9 1000 0 081 PI I Image: Startup 0832: 9 1000 0 081 PI I Image: Startup 0832: 9 1000 0 081 PI I Image: Startup 0832: 9 1000 0 081 PI I Image: Startup 0836: 13 50 0 081 PI I Image: Startup 0836: 13 50 0 081 PI I Image: Startup 0836: 13 50 0 081 PI I Image: Startup 0836: 13 50 0 0	CPU 314C-2 DP	D	iagnostics/C	lock	Protection	1	Communication
2 DI24/D016 Interrupts Time-of-Day Interrupts Cyclic Interrupts 3 AIS/A02 Priority Execution (ms) Phase offset (ms) Process image 5 Position 0830: 7 5000 0 081 PI • 9 CP 343-1 0830: 7 5000 0 081 PI • 0831: 8 2000 0 081 PI • 081 PI • 0832: 9 1000 0 081 PI • 0832: 10 500 0 081 PI • 0832: 10 500 0 081 PI • 0832: 10 500 0 081 PI • 0835: 12 100 0 081 PI • 0836: 13 50 0 081 PI • 0836: 13 50 0 081 PI • 0838: 15 10 0 081 PI •	DP	Gene	ral	Startup	Cycle/Clock Mem	ory	Retentive Memory
AIS/A02 Process image 4 Count Priority Execution (ms) Phase offset (ms) Process image 5 Position 0830: 7 5000 0 081 PI • 9 0831: 8 2000 0 081 PI • 0832: 9 1000 0 081 PI • 0832: 9 1000 0 081 PI • 0832: 10 500 0 081 PI • 0832: 10 500 0 081 PI • 0832: 10 500 0 081 PI • 0834: 11 200 0 081 PI • 0835: 12 100 0 081 PI • 0836: 13 50 0 081 PI • 0836: 13 50 0 081 PI • 0839: 15 10 0 081 PI •	2 DI24/D016	Int	errupts	Time-	of-Day Interrupts		Cyclic Interrupts
4 1 Count Process image 5 Position Priority Execution (ms) Phase offset (ms) 1 0830: 7 5000 0 051 PT • 1 0830: 7 5000 0 051 PT • 1 0830: 7 5000 0 051 PT • 1 0830: 9 1000 0 051 PT • 1 0830: 10 500 0 051 PT • 1 0830: 10 500 0 051 PT • 1 0830: 10 500 0 051 PT • 0830: 12 100 0 051 PT • 051 PT • 0830: 13 50 0 051 PT • 051 PT • 0830: 13 50 0 051 PT • 051 PT • 0830: 15 10 0 051 PT • 051 PT •	3 AI5/A02						
Image: Solution of the second state	4 Lount 5 Position	-	Priority	Execution (ms) Phase offs	at (me)	Process image
H CP 343-1 0030 1 5000 0 061 71 1 0831 8 2000 0 061 71 1 0832 9 1000 0 061 71 1 0832 9 1000 0 061 71 1 0832 10 500 0 061 71 1 0833 10 500 0 061 71 1 0835 12 100 0 061 71 1 0836 13 50 0 061 71 1 0837 14 20 0 061 71 1 0838 15 10 0 061 71 1	1031101		la la	Foro			and and set
0831 8 2000 0 081 PI • 0832 9 1000 0 081 PI • 0832 10 500 0 081 PI • 0832 10 500 0 081 PI • 0833 10 500 0 081 PI • 0834 11 200 0 081 PI • 0835: 12 100 0 081 PI • 0836: 13 50 0 081 PI • 0837: 14 20 0 081 PI • 0838: 15 10 0 081 PI •	CP 343-1	<u> </u>		5000	10		JUBI EL 🔽
0B32: 9 1000 0 0B1 PI • 0B32: 10 500 0 0B1 PI • 0B32: 10 500 0 0B1 PI • 0B35: 11 200 0 0B1 PI • 0B35: 12 100 0 0B1 PI • 0B35: 12 100 0 0B1 PI • 0B35: 13 50 0 0B1 PI • 0B37: 14 20 0 0B1 PI • 0B38: 15 10 0 0B1 PI •		OB3 <u>1</u> :	8	2000	Jo		OB1 PI 💌
0B33: 10 500 0 0B1 PI • 0B34: 11 200 0 0B1 PI • 0B35: 12 100 0 0B1 PI • 0B35: 13 50 0 0B1 PI • 0B37: 14 20 0 0B1 PI • 0B39: 15 10 0 0B1 PI •		0B3 <u>2</u> ;	8	1000	0		OB1 PI 💌
OB34: 11 200 0 OB1 PI _ OB35: 12 100 0 OB1 PI _ OB36: 13 50 0 OB1 PI _ OB37: 14 20 0 OB1 PI _ OB39: 15 10 0 OB1 PI _		0B3 <u>3</u> ;	10	500	0		OB1 PI -
OB35: 12 100 0 OBi FI 0B36: 13 50 0 0BI FI 0B1 FI 0B1 FI <		0834:	11	200	0		OBI PI
OB36: 13 50 0 DB1 PI × OB37: 14 20 0 0B1 PI × OB38: 15 10 0 0B1 PI ×		0835	12	100	0		OBL PT
0B30. 14 20 0 0B1 PI 💌 0B30. 15 10 0 0B1 PI 💌		0826		En.	1-		
083 <u>7</u> 14 20 10 081 PI 🗸 083 <u>8</u> 15 10 08 081 PI 💌		0000	120	100	10		
083 <u>8</u> 15 10 0 081 PI 💌		UB3 <u>1</u> 1	14	1 20	ju -		OB1 FI
		0B3 <u>8</u> :	15	10	0		OB1 PI 💌

图 1-11 循环中断时间的设定

2. 编辑 FC1

1) 打开 FC1, 进入程序编辑状态;

2) 选定 FC105 块: Insert 菜单中选中"Program Elements" →Libraries→Standard Libraries→ T1-S7Converting Blocks→FC105 SCALE;

3) 编辑块, 如图 1-12 所示。其中:

输入(IN)端: PIW752, PIW754, PIW756存储着3路液位信号 A/D转换后的数字量;

HI_LIM:液位上限;

LO_LIM 液位下限;

BIPOLAR: 极性, 本例为单极性;

RET_VAL: 功能块执行状态字;

OUT: MD30, MD34, MD38 分别为量程转换后的液位实际值。

(a) 1[#]容器液位输入处理—量程转换

图 1-12 FC1 块编辑

3. 编辑 OB35 (2^{*}容器液位 PID 控制)

1) 打开 OB35, 进入程序编辑状态;

2)选定 FB41 块: Insert 菜单中选中"Program Elements" →Libraries→Standard Libraries→ PID Control Blocka→FB41 CONT-C;

3) 编辑块。FB41 需要一个背景块 DB41, 如图 1-13 所示。

4. 编辑 FC2

1) 打开 FC2, 进入程序编辑状态;

2) 选定 FC106 块:

Insert菜单中选中"Program Elements"→Libraries→Standard Libraries→T1-S7Converting Blocks →FC106 UNSCALE; 3) 编辑块, 如图 1-14 所示。其中:

图 1-14 FC2 块编辑

输入(IN)端: MD100是 PID 输出的控制量;

HI_LIM:电磁阀开度上限;

LO_LIM 电磁阀开度下限;

BIPOLAR: 极性;

RET_VAL: 功能块执行状态字;

OUT: PQW752 为量程转换后的对应电磁阀开度的数字量。

5. 编辑 OB1

OB1 是系统的主程序,因此要把以上编辑的各个子程序在主程序中进行调用。打开 OB1,弹出 LAD/STL/FBD 窗口,分别调用 FC1, FC2 模块,如图 1-15 所示。

File Edit Insert FLC Debug Yiew Options Window Help Contents Of: 'Environment\Interface OB1 :: "Main Program Sweep (Cycle)" E 程序 Network 1: Title: FC1 FC2 FC3 SFD blocks SFD blocks SFD blocks Multiple instances Multiple instances Multiple instances MINITY CALL FC 1 CALL FC 2	🔣 LAD/STL/FBD - [OB1 液位者	名制\SIMATIC 300(1)\CPU 314C-2 DP]
Contents OF. Environment linterface Contents OF. Environment linterface OB1: "Main Program Sweep (Cycle)" 主程序 Network 1: Title: 可FC1 FC2 FC3 FC105 SCALE CONVERT FC106 UNSCALE CONVERT SFB blocks Multiple instances Environment linterface CALL FC 1 Network 2: Title: CALL FC 2	File Edit Insert PLC Debug View	Options Window Help
	 New network FB blocks FC blocks FC1 FC2 FC3 FC105 SCALE CONVERT FC106 UNSCALE CONVERT SFB blocks SFC blocks Multiple instances Libraries 	Unitents Uf: "Environment\Interface OB1 : "Main Program Sweep (Cycle)" 主程序 Network 1: Title: 個用FC1 CALL FC 1 Network 2: Title: 個用FC2 CALL FC 2

图 1-15 0B1 块编辑

6. 建立变量表

在 Blocks 中填加变量表(如 VAL_1),如图 1-16 所示。双击 VAL_1,进入变量表编辑窗口,依次填加 需要监视和在线修改的变量,如图 1-17 所示。

📴 液位控制 E:\rjj\液包	拉控制			
 一個 放位控制 一個 SIMATIC 300(1) 一個 CPU 314C-2 DP 一回 S7 Program(1) 一回 Sources 回 Blocks ① + 二 CP 343-1 	System data ⊕ FC1 ⊕ DB41	• OB1 • FC2 • VAT_1	0835 FC105	두 FB41 두 FC106

图 1-16 填加变量表

	¥a	x - [V	/AT_1	液位控制\SIMATIC	300(1)\CPU	314C-2 DF	P\S7 Progra	m (1)]
	<u>T</u> a	ble <u>E</u> di	t <u>I</u> nsert	P <u>L</u> C V <u>a</u> riable <u>V</u> iew	Options <u>W</u> indow	w <u>H</u> elp		
÷	1	0 🖻	8	X 🖻 🛍 🖂 🖂	× <u>-</u> -	?	Sy 60° =12	ଙ୍କ 🕫
		Address	Symbol	Display format	Status value	Modify value		
1		PIW 752	2	DEC				
2		MD 30		FLOATING_POINT				
3		PIW 754	1	DEC				
4		MD 34		FLOATING_POINT				
5		PIW 756	6	DEC				
6		MD 38		FLOATING_POINT				
7		Q 124.	4	BOOL				
8		M 0.0		BOOL		false		
9		M 0.1		BOOL		true		
10		M 0.2		BOOL		true		
11		M 0.3		BOOL		true		
12		MD 20		FLOATING_POINT		150.0		
13		MD 110)	FLOATING_POINT		10.0		
14		MD 114	•	TIME		T#10ms		
15		MD 118	}	TIME		T#1ms		
16		MD 100)	FLOATING_POINT				
17		PQW 75	52	DEC				
18		Q 124.	3	BOOL				
19		MD 90		FLOATING_POINT		100.0		
20		MW 20	0	DEC				
21		M 0.4		BOOL				

图 1-17 编辑变量表

(二)程序调试

第1步:在下载之前,先打开主站的 Hardware,弹出 HW Config 窗口,根据实际情况,将 CUP 中的 AI5/A02 中的 Inputs 和 Outputs 量程进行相应设置(如电流 4~20mA),如图 1-18 所示。

femperature <u>u</u> nit:	Degrees C	elsius			
Input	0	1	2	3	4
leasurement					
Measurement type:	I	I	I	I	R-2L
Measuring range:	420 mA	420 mA	420 mA	420 mA	600 Ohms
interference frequency	50 Hz	50 Hz	50 Hz	50 Hz	
p <mark>erties - AI5/AO2 -</mark> meral Addresses Inputs ((RO/S2.3) Dutputs)			

图 1-18 Inputs 和 Outputs 量程设置

第2步:选中Blocks中的程序块OB1,FC1,FC2,FC3,FC105,FC106,FC41,DB41,点击下载,全部下载到S7300中,如图1-19所示。

🛃 SIMATIC Manager - [液	位控制 C:\E	Program Fil	es\Siemens\Step7\	s7proj\
🛃 Ende Edit Insert PLC Vi	ew <u>O</u> ptions <u>W</u> ind	ow <u>H</u> elp		
D 🛩 🖁 🛲 🗴 🖻 🖻 🌔	🌰 🖻 💁 🖭	2 8- 8- 8-	<pre></pre>	• 1
 一一、 液位控制 一一、 SIMATIC 300(1) 一一、 CPU 314C-2 DP 一一「ST ST Program(1) 一一」 Sources 一一」 Blocks ① Blocks 	System data #FC1 #DB41	■ 0B1 ■ FC2 ■ VAT_1	∰ 0835 ∰ FC105	FB41 FC106

图 1-19 下载程序

第3步:点开变量表可以观察相应变量的变化,也可以修改液位设定值、PID参数等变量,如图1-20 所示;也可以直接监视程序的运行,即点开FC1,可以看到1~3号圆柱形容器液位的变化,如图1-21所示。

	<u>T</u> a	ble	<u>E</u> dit	<u>I</u> nsert	P <u>L</u> C V <u>a</u> riable <u>V</u> iew	Options <u>W</u> indo	w <u>H</u> elp	\sim	
÷	1		2	1 5	8 🖻 🛍 🖂 🖂	× 📲 🕯 🕨	?	(6)	60 1
		Add	ress	Symbol	Display format	Status value	Modify value		
1		PIW	752		DEC	11096			
2		MD	30		FLOATING_POINT	200.6655			
3		PIW	754		DEC	8336			
4		MD	34		FLOATING_POINT	150.7523			
5		PIW	756		DEC	5888			
6		MD	38		FLOATING_POINT	106.4815			
7		М	0.0		BOOL	false	false		
8		М	0.1		BOOL	true	true		
9		М	0.2		BOOL	true	true		
10		М	0.3		BOOL	true	true		
11		MD	20		FLOATING_POINT	150.0	150.0		
12		MD	110		FLOATING_POINT	10.0	10.0		
13		MD	114		TIME	T#1s	T#10ms		
14		MD	118		TIME	T#1ms	T#1ms		
15		MD	100		FLOATING_POINT	0.0			
16		PQW	/ 752		DEC				
17		MD	90		FLOATING_POINT	0.0			
18		М	0.4		BOOL	false	false		

图 1-20 变量表的在线监视

(b)

图 1-21 程序的在线监视

五、实现液位监控功能

(一) 创建项目

打开 WinCC 软件,新建一个项目,取一个名字,如 "S7300 水箱监控界面",如图 1-22 所示。

<pre>@ WinCCExplorer - I:\I(</pre>	作\控制网络实验》	室\WINCC6版监控界面\	、s7300水箱监控界面\
文件(E) 编辑(E) 视图(Y) 工具	(T) 帮助(H)		
D 📽 ■ ► % 🖻 💼	<u>□</u> <u></u> <u></u> <u>□</u> <u>□</u>	≌ №	
□·· 🔮 s7300水箱监控界面	名称	类型	
🔄 🖳 计算机	圓计算机	计算机	
□ ∰ 变量管理	·····································	变量管理	
	臣 结构变量	结构	
1 图形编辑器	☆ 图形编辑器	编辑器	
1 报警记录	圖报警记录	编辑器	
		编辑器	
→ ●	➡ 报表编辑器	编辑器	
	🗿 全局脚本	编辑器	
	1日 文本库	编辑器	
20日戸日理話 第二次図表引	1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	编辑器	
● 2 × 汞 5	夏 交叉索引	编辑器	
	▲ 加载在线修改	编辑器	
	I 图 1-22 创]建 WinCC 项目	

(二) 建立 WINCC 与 PLC 的通信连接

WINCC 与自动化系统之间的通信通过逻辑连接来实现。通信驱动程序位于最高等级,也称作通道,本设计中通道选择"SIMATIC S7 PROTOCOL SUITE"中的"Industrial Ethernet"。该通道单元和协议用来访问工业以太网,通信驱动程序通道如图 1-23 所示。在通道单元"Industrial Ethernet"下建立到 S7300 控制系统的逻辑连接,如 S7300plc,连接属性和参数设置如图 1-24 和图 1-25 所示。

图 1-23 通信驱动程序通道

连接属性	È					×
常规	組	变量				
名字	sī	/300plc			属性 (0)	
单元:	T.	ndustrial E	thernet	 ~		-
服务者 ZDHO	的表 3					
					Jack .	
<u></u>					S.	
			确定	取消		₩

图 1-24 连接属性对话框

08 00 06 71 49 25	_
08 00 06 71 49 25	
0	
2	
夬 (Y)	
02	
0	
取消	帮助
	, (W) [02] 取消

(b)

图 1-25 连接参数设置

(三) 创建变量

WINCC 与 S7300PLC 实现数据交换是通过变量实现的, WINCC 中建立的变量地址要对应 PLC 中的变量地址。点中"S7300 PLC"单击右键,新建变量。如图 1-26 所示。

图 1-26 新建变量

系统实现三容液位的实时监控、参数设置和修改,需要建立一些过程变量,如比例增益,积分时间常数,微分时间常数,液位 1、液位 2、液位 3 的采样值和设定值,手动值阀门开度等。以变量"1#液位实际值"的建立为例,说明变量的建立过程:点击"新建变量",修改变量属性,在名称栏输入"1#液位实际值",在数据类型栏选择"浮点数 32 位 IEEE754",点"选择"进入"地址属性",把在 S7300PLC 中存储 1#液位实际值的 MD30 输入进去,属性对话框如图 1-27 所示。

其他需要设置的变量如上所述依次建好,系统的变量表如图 1-28 所示。

18

_ 数据类型 (重): 长度:	浮点数 32 位 IEEE754 4		
地址(A): 改变核式(A):	MD30选择(5)		
线性标定 过程值范围	·····································		

图 1-27 设置变量属性

图 1-28 系统所需的变量表

(四) 监控界面设计

1.监控画面的创建和编辑

图形系统是用于创建并显示过程画面。主要是通过"图形编辑器"进行画面编辑,如图 1-29 所示。本系统创建了启动画面、主监控画面、PID 参数设置画面等,分别如图 1-30 至图 1-32 所示。

图 1-30 启动画面的编辑

图 1-31 液位监控界面的编辑

图 1-32 PID 参数设置界面的编辑

在界面的编辑中,还要将图形或输入输出域与相应的变量进行连接。图 1-33 为输入输出域的变量连接,

图 1-34 为输入输出域的属性设置。

2#液包设定值	1/0 城钼态 ? 🛛
0.0	
2#歳役支际役 0.000 ++500 -+450 -+450 -+400 -+350 -+350 -+250 -+150 -+150 -+100 +50	 变量: ●#微脑颈隙隙间 更新 根据变化 ▼ 类型 ● 输出 ● 输入 ● 输出和输入 格式化 字体之称 14 字体名称 Arial 颜色
王子子 图 1-33	····································
对象尾性	

图 1-34 输入输出域的属性设置

2.在线趋势曲线界面的设计

(1) 过程值归档

双击"变量记录",进入变量记录窗口,如图 1-35 所示。在变量记录窗口中右击"归档",选择"归档向导"设置归档名称并选择变量,如图 1-36 所示。建好归档后,还可以修改归档属性及过程变量属性,如图 1-37 和图 1-38 所示。

图 1-35 变量记录

图 1-36 归档向导

♥WinCCExplorer - H:\工作\ 文件(F) 编辑(E) 视图(V)	控制网络实 [且(1) 帮助	验室∖组态项目∖WINC (H)	□6嚴監控界面\s	7300水箱监控界	面\\$7300水箱盘	经界面.MCF				
] D 📽 ■ ► ½ 🖻	€ ≜ <u>a</u> 3	• E T P N								
🖂 🦿 s7300水箱监控界面	名称		类型		上一次修改		1	言息		
 ● 计算机 ① ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●] 变量记录 文件(E) 编	- [\$7300水箱监控界] 谓(E) 视图(∀) 帮助(H	值.MCP])						_	
☆ 图形编辑器 报警记录] 🖪 🕺	🖨 🖻 🖕 📰 🕅	₽ №							
<u>要量记录</u> 报表编辑器 近表编辑器 全局脚本 文本库 アン アン アン アン アン		水箱监控界面.MCP 器 且态	_归档名称 yewei	」 <u>归档模式</u> 过程值归档	修改时间 03/29/2005 03:21	:44 PM				
● 元 ○ ○ ○ ○ ○ ○ 二 二 二 二 二 二 二 二 二 二 二 二 二	变量: 2yew	名称 <mark>过程变量</mark> ei 2#液位实际值	变量类型 注释 模拟量	修改时间 03/29/2005 03:3	采集类型 15:5:周期 - 连续	提供变量 系统	归档	也在变量中	R集周期 IOSECONDS	<u>归档</u> 月 1
	Зуеж	ei 3#液位实际值	模拟量	03/29/2005 03:3	86:1 周期 - 连续	系统	允许	1	OSECONDS	1
	▲ 【 【 【 一 【 】 【 】 】 【 】 】 】 】 】 】 】 】 】 】	 日日福島性 日福位置		畫型 呈值归档 溶归档 方间保护 > 方间保护 > 改基本参数。	 选择 造择 着		变量: 2/51	2		

图 1-37 归档属性设置

, 受量记录 - [s7300水箱监控界面]					
交件(E) 编辑(E) 视图(E) 帮助(E)					
■ \$7300水箱监控界面. MCP	归档名称	归档模式	修改时间		
() 定时器	, yewei	过程值归档	3/29/2005 3	:21:44 PM	
	过程变量属性		? 🛛		
	归档变量 参数 显示	事件			
	归档变量名称	变	2 重类型		
	2yewei	相	夏拟量		
变量名称 过程变量 变	过程变量名称			旧档	也在变量中 Я
▶ 2yewei 2#液位实际值 模	2#液位实际值		选择	允许	1
3wewei 3期限1立头际1直 作業	/ 译释			757	1
	111+				
	提供变量	归档			
	 ● 系统 ● 手动输入 	● 允许 ○ ²	不允许		
	采集类型				
	周期 - 连续	•			
	周期				
	采集:	10SECONDS	-		
	归档/显示:	1 * IOSECONDS	-		
	同时在变量中输入归档值				
S		选择	·		>
准备就绪			量:	2 / 无限制	NUM //
	在变量属性的常规标签中可	以改变基本参数			
		确定 取消	帮助		

图 1-38 过程变量属性设置

(2) 趋势曲线界面设计

首先进入趋势曲线界面编辑窗口,添加 WINCC 在线趋势控件,如图 1-39 所示。双击该对象,进行 属性设置,并进行变量的连接,如图 1-40 所示。

图 1-39 添加 WINCC 在线趋势控件

🛉 Graphics	Designer - [趋势曲线.Pdl]							
介 文件(E) 編	贵(E) 视图(V) 插入(E) 排列(A)	工具(1) 窗口(1) 税助	ታ (H)					
🛛 🖒 🖻 🔚 🗌) 👗 🖻 🛍 🗠 🗠 🎒 🖥	7 🗗 🔠 👫 🗨 🤆	2 🎕 🖉 🖉	4 € 3	8	₩?	Tr @Dotum	• 1
第四回目前 第四目前 第四回目前 第四目前 第四目前 第四目前 第四目前 第四目前 第四目前 第四目前 第四	 ▼inCC 在线趋势控件的展性 ● ● ● ● ● ● ● ● ● ● ● ○ ● ○	定 取消	(次用 (A) ↓		LE 15:5	x ²		
1.507.0							11	tor protected

图 1-40 在线趋势控件的属性设置

3. 各画面的链接

利用按钮的属性配置可以实现各界面的跳转和返回。

(五) 调试

首先进入计算机属性对话框,选择启动按钮,将"文本库运行系统"、"变量记录运行系统"、"图形运行系统"选中并确定,如图 1-40 所示。点激活图标运行系统,如图 1-41 所示。各画面在线运行状态如图 1-42 至 1-45 所示。

本设计是一个双容系统,被控参数是 2#容器液位值。在线趋势界面运行结果如图 1-45 所示,此时 2# 容器液位设定值为 150mm。

计算机属性	
常规 启动 参数 图形运行系统 运行系统	1
□ 17算机名称(图) 20090722-1823 计算机类型 ○ 服务器(S)	
计算机属性	
「常规 启动 参数 图形运行系统 运行系统 WinCC 运行系统 WinCC 运行系统的自动顺序(S)	1
 ✓文本库运行系统 □全局脚本运行系统 □报警记录运行系统 ✓变量记录运行系统 	
 □报表运行系统 □ 图形运行系统 ■ Bit hndo(44条) (应用程序 (2)) 	编辑([])
PIJUHUT \$7/2/HAE/F (2)	添加 (<u>A</u>) ⊞除(<u>R</u>)
	向上(10) 向下(10)
	编辑(2)

图 1-40 设置 WinCC 启动顺序

ኛ WinCCExplorer - C:\Docu	aents and Settings\Administrator\桌面\s7	7300水箱监控界面\s7300水箱监控界面.■CP
文件(E) 编辑(E) 视图(Y) 工具(E)	帮助(出)	
D 📽 🔹 🕹 🕹 🔒 🖕	2 1× ⊞ 🖀 😢	
□- 🕐 s7300水箱监控界面 👜 🕂	名称	类型
山 计算机	20090722-1823	服务器

图 1-41 激活运行系统

三容水箱液位监	控系统
进入	退出

图 1-42 启动画面运行状态

图 1-43 三容液位监控界面运行状态

图 1-45 趋势运行曲线

第三节 基于 Profibus 的模拟锅炉液位控制系统设计

一、系统分析

系统硬件部分包括被控对象(实验室模拟锅炉系统)、S1-400 控制器和 PC 机;采用模糊控制算法,应用 Step7 软件和 WinCC 软件编写控制和监控程序。基于 Profibus 的模拟锅炉控制系统设计的主要目的是 控制锅筒的液位,使之稳定在某一给定值上并具有较小的余差。

1. 被控对象

图 1-46 实验室模拟锅炉系统

如图 1-46 所示,模拟锅炉系统主要由三个部分构成:

(1) 变频水泵,高位恒压水塔和储水池构成的供、排水系统。

(2) 由分布在三个不同层面上的四个单元所组成的被控过程,这四个单元分别是: 1) 带有冷却水 夹套的锅筒单元。; 2) 流量检测与调节执行组合单元; 3) 回路的压力检测单元; 4) 并联双容单元。

(3)各种过程控制器,例如:常规控制仪表,可编程控制仪表等,以及工作电源和过程控制实验操 作台等。

这三个部分和四个单元之间彼此均相对独立,本系统主要针对第一个单元实现锅筒的液位控制。 装置的主要传感器和执行器型号:

① 液位变送器(HM型压力变送器)

LT-3采用工业用的扩散硅压力变送器。压力传感器用来对锅筒的液位进行检测。主要性能指标:

型号: PK2AAAA

量程: 5.88KPa

输出信号: 4-20mA DC

电源电压: 24VDC

② 电动调节阀

采用智能型电动调节阀,用来进行控制回路流量的调节。主要技术指标:

型号: 2DY-10P-63/4

- 口径: G3/4mm
- 压力: 1.6MPa

电源: 24VAC 输入信号: 4-20mA 阀门控制精度: 0.1%-3%可调

2. 控制系统结构

系统的网络结构与本章第一节中的图 1-1 相同,一级主站 S7400 可编程控制器与二级主站 PC 机之间 通过工业以太网通信, PC 机主要有两种用途:

① 系统监控。运行 WinCC 监控软件用于实时监控现场情况;

② 作为工程师站运行 STEP7 软件和 WinCC 软件,进行系统硬件、软件、通信组态和监控界面、趋势、报警曲线的组态。

S7400 可编程控制器与分布式 I/O ET200 之间通过 Profibus 总线协议连接,实时采集现场信号并发出 控制指令。

系统硬件采用 S1-400 控制器,其各有一块 16 通道的 DI/DO 模块,两块 8 通道的 AI 模块,一块 4 通道的 AO 模块。

3. 控制算法

系统采用模糊控制算法,用 SIEMENS S1-400 可编程序控制器的 Step7 软件设计一个两维模糊控制器,将控制器的模糊输出反模糊化后,化为实际输出而控制调节阀的开度,使锅筒液位达到给定值。通过在 WinCC 中的参数连接与设置,实现液位运行界面的实时监测,从而获得良好的控制效果。液位单回路控制 系统方框图如图 1-47 所示。

图 1-47 液位单回路控制系统方框图

4. 预期控制目标

锅筒的液位变化范围是 0—500mm,设计合适的控制器,使系统具有快速、稳定的响应曲线,超调量 应该小于 20%,系统的调节时间为 5s 左右。当系统发生扰动时,被控液位能快速恢复到原来所给定的液 位值。

二、系统网络及硬件组态

STEP7 软件可以在 Windows95/98/2000 或 WindowsNT 环境下运行。现在 STEP7 V5.3 软件可以在

Windows XP 环境下运行。STEP7 软件是 SIMATIC S1-300/400 站创建可编程逻辑控制程序的标准软件,应用 STEP7 软件可以方便地构造和组态 PROFIBUS-DP 网络。

系统控制器 S1-400 站的硬件构成如表 7.1 所示:

表 7.1 S1-400 站的系统硬件

硬件名称	订货号	说明
RACK-400	1P 6ES7400-1JA01-0AA0	S7400 机架
PS 407 10A	401-0KA01-0AA0	电源模块
CPU 414-3	414-3XJ00-0AB0 V3.0	CPU 模块
CD 442 1	443-1EX11-0XE0 V2.3	通过棋杆
Cr 445-1	MAC: 08-00-06-6F-31-D1	通机快达
CP 443-5EXT	443-5DX03-0XE0 V4.0	通讯扩展模块
SIMATIC ET200M	153-1AA03-0XB0	分布式 I/O 从站
SM321 DI 16XDC24V	321-1BH02-0AA0	数字量输入模块
SM322 D0 16XDC24V/0.5A	322-1BH01-0AA0	数字量输出模块
SM331 AI 8X12BIT	331-7KF02-0AB0	模拟量输入模块
SM331 AI 8X12BIT	331-7KF02-0AB0	模拟量输入模块
SM332 A0 4X12BIT	332-5HD01-0AB0	模拟量输出模块

1. 设置 PG/PC 接口

在 SIMATIC Manager 主界面,点击"选项"菜单,在下拉文本框中选择"设置 PG/PC 接口",如图 1-48 所示,在弹出的对话框中,选择参数为: ISO Ind.Ethernet→Realtek RTL8139(A) PCI Fast Ethernet Adapter。

图 1-48 设置 PG/PC 接口

2. 硬件组态

在 Step7 组态界面 HW Config 中顺序插入"机架"→"电源模块"→"CPU 模块"→"以太网通讯模 块"→"设置 MAC 地址"→"数字量、模拟量输入输出模块"→"修改模拟量输入/输出模块属性"→ "存盘编译"→"下载"。组态的系统硬件如图 4-49 所示,网络总览图如图 4-50 所示。

三. 系统控制软件组态

1. 建立变量表和符号表

表 7.2 是系统用到的 I/O 分配和变量表。

表 2 I/O 分配和变量使用

地址	说明	数据类型
M0.1	进水电磁阀动作 VD1	BOOL
M0.2	出水电磁阀动作 VD2	BOOL
M0.3	停止电磁阀 VD-STOP	BOOL
M0.4	手自动开关	BOOL
M0.5	置1,自动调节	BOOL
M0.6	上限报警	BOOL
M0.7	下限报警	BOOL
Q0.0	进水电磁阀	BOOL
Q0.1	出水电磁阀	BOOL
PIW516	锅筒液位数字量	INT
PIW522	进水流量 数字量	INT
PIW524	出水流量 数字量	INT
PQW512	进水阀输出	INT
PQW514	出水阀输出	INT
MD20	锅筒液位实际值	REAL
MD94	进水流量实际值	REAL
MD124	出水流量实际值	REAL
MD78	进水阀开度	REAL
MD86	出水阀开度	REAL
MD82	出水阀门操作量	REAL
MD90	进水阀门操作量	REAL

图 1-51 和图 1-52 分别是软件组态时所设置的符号表和变量表。

Syn	nbol Edito	or - [S7 Program(1) (9	Symbol	ls) 1	IWEICONT	ROL	SIMATIC 400(1)\CPU 414-3 DP]	_ 8 ×
👌 Syr	mbol Table	Edit Insert View 9	Options	Wind	low <u>H</u> elp			_ 8 ×
😂 I	1 6	👗 🖻 💼 👳	c> [All Sy	mbols		▼ 1/2 №	
0	Statu	Symbol /	Addre	355	Data typ	Co	omment	
1	8 6	AD_DT_TM	FC	1	FC	1 Ad	ld DT Time	
2		COMPLETE RESTART	OB	100	OB 10	0 Co:	mplete Restart	
3		CYC_INT5	OB	35	OB 3	5 Cy	velic Interrupt 5	
4		in阀输出	PQ₩	512	INT			
5	i i	out阀输出	PQW	514	INT			
6		R_STRNG	FC	30	FC 3	0 Re	al To String	
7	J. I.	SCALE	FC	105	FC 10	5 Sc	caling Values	
8		UNSCALE	FC	106	FC 10	6 Un	uscaling Values	
9	8 6	VAT_1	VAT	1				
10		VD-STOP	M		BOOL			
11		VD1	M		BOOL			
12	lí III	VD2	M		BOOL			
13	li li	出水 操作量	MD	82	REAL			
14		出水流量 实际值	MD	124	REAL			
15	J	出水流量 数字量	PI₩	524	INT			
16		单极性	M		BOOL			
17		锅炉液位 给定值	MD	24	REAL			
18		锅炉液位 实际值	MD	20	REAL			
19	2 V	锅炉液位 数字量	PIW	516	INT			
20	1	进水 操作量	MD	90	REAL			
21	1	进水阀 开度	MD	78	REAL			
22	1	进水流量 实际值	MD	94	REAL			
23	1	进水流量 数字量	PI₩	522	INT			
24	(偏差	MD	28	REAL			
25		上限报警	M		BOOL			
26	1	手自动 开关	M		BOOL			
27	2 5	下限报警	M		BOOL			
28	1					1		

图 1-51 符号表

۲	AT_1 -	- YIWEIC	ONTROL\SIMATIC 400	(1)\CPU 414-3 DP\5	7 Program(1)		
1	A dd	ress	Symbol	Display format	Status value	Modify value	
	MD	24	"锅炉液位 给定值"	FLOATING_POINT		150.0	
	MD	20	"锅炉液位 实际值"	FLOATING_POINT		200.0	
	MD	28	"偏差"	FLOATING_POINT			
	MD	120		FLOATING_POINT			
	MD	70		FLOATING_POINT			
	MD	78	"进水阀 开度"	FLOATING_POINT			
	MD	110		FLOATING_POINT			
	M	0.4	"手自动 开关"	BOOL		false	
	M	0.6	"上限报警"	BOOL			
2	M	0.7	"下限报警"	BOOL			
	MD	82	"出水 操作量"	FLOATING_POINT		50.0	
2	MD	90	"进水 操作量"	FLOATING_POINT		30.0	
3	M	0.1	"VD1"	BOOL		false	
\$	M	0.2	"VD2"	BOOL		false	
5	M	0.3	"VD-STOP"	BOOL		false	
6	MD	94	"进水流量 实际值"	FLOATING_POINT			
7	MD	124	"出水流量 实际值"	FLOATING_POINT			

图 1-52 变量表

2. 控制算法的实现

(1) 主程序

在 OB1 里,主要实现了锅筒液位输入信号、进水流量信号的量程转换,如图 1-53 所示;进水阀门输 出信号的量程转换,如图 1-54 所示;阀门的手自动切换程序,上下限报警程序等,如图 1-55、1-56 所示。

图 1-55 进水调节阀手自动切换

图 1-56 上限报警

(2) 模糊控制编程

在实际应用中,用 PLC 构成模糊控制器有两种方式。一种是使用专用的 PLC 控制单元,用户可以在 PLC 的上位计算机上安装模糊支持软件,用户不需要专门的编程工具就能对模糊单元编程、建立知识库,并且还可以再线监视模糊单元的运行状况。显然,采用了这种专门的模糊单元方便了用户。模糊控制器的 另一种组成方式是采用与数字控制器的相同的硬件结构,用 PLC 等来组成硬件部分,而在软件上用模糊算 法取代原来数字控制器的数字控制算法,这样就组成了一个 PLC 的模糊控制系统。由此可见,这种模糊控制器在本质上只是一种模糊算法而已。显然采用了这种方法,模糊控制器组成简单、开销少、灵活性高、应用范围广。采用专用的硬件模糊控制器是用硬件来直接实现模糊推理,优点是推理速度快、控制精度高;但与使用软件方法相比,PLC 模糊控制模块成本高,使用的范围受到限制。本系统采用第二种方法。

OB35 为中断服务程序,实现模糊化处理和模糊控制量表查询部分,同时此部分又为整个程序设计的 关键。在前期的计算中,已经将模糊控制的总查询表离线计算出,如表 7.3 所示。其中 SP 为设定值,E 为 系统设定值与实际值偏差,U 是输出量。因此只需编程实现查询功能和模糊化处理及解模糊过程。

SP SP					
E	-2	-1	0	1	2
-2	-2	-2	-2	0	0
-1	-2	-1	-1	-1	0
0	-2	-1	0	0	0
1	0	0	1	1	1
2	0	1	2	2	2

表 7.3	模糊控制	表
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		n

以下给出部分主要程序:

① 求出偏差,如图 1-57 所示。



图 1-57 求出偏差

② 偏差模糊化,如图 1-58 所示。

```
偏差模糊化y=(n-m)/(b-a)*[x-(a+b)/2]=(2-(2))/(500-(-500))*[x-0]=0.004x
```



图 1-58 偏差模糊化

③ 数据类型转换,将输出取整,如图 1-59 所示。



#### 图 1-59 偏差模糊化取整数出

④ 本系统中偏差的实际变化范围为[-500,500],需要转换到[-2,2]这个区间。用下面的例子说明如何 调用模糊规则。如图 1-60 和 1-61 所示,判断模糊化偏差与设定值处于论域[-2,2]中的某个等级,则调用 相应的模糊规则,如图 1-62 所示。

	CMP ==R	M100.0	
MD120-	IN1		
-2.			
000 -	IN2		
	1112		

图 1-60 E 是否等于-2



图 1-61 SP 是否等于-2



图 1-62 E=-2, SP=-2, 确定 U

⑤ 反模糊化。确定模糊规则后,将模糊化控制量转换为实际控制量,如图 1-63 所示。

解	¥模糊 y=(n-m) x=25y+5	/(b-а О	ı)*[x−(	a+b)/2]=(2	!-(2))/(100-0))*[x	:-5C	)]		
	<b>■0.6</b> ″上限报整″ 」/L	EM MI	JL_R	1			AD	D_R	
	171 MD70 -	IN1	OUT	-MD74	MD 7	4 -	IN1	LIIO	<b>1078</b>
	2. 500000e+				5 000000e	+	-	OUT	
	001 -	11112		]	00	1-1	IN2		]

# 四. 监控系统组态

- 1. 启动 WinCC;
- 2. 创建新项目;
- 3. 添加 PLC 驱动程序,以上步骤与本章第二节的创建过程相同,不再详述。

建立与 S7400 可编程控制器程序相对应的变量表,如图 1-64 所示。

WinCCExplorer - E:\wincc new 5-7\0508332	2109guolu\0508332109guolu.MCF	P	
文件(E) 编辑(E) 视图(V) 工具(I) 帮助(H)			
🗅 📽   = 🕨   X 🖻 🖻 🗠 🗁 🖽	Image: Image		
🖃 🦿 0508332109guolu	名称	类型	参数
山 山 山 山 山 山 山 山 山 山 山 山 山 山 山 山 山 山 山	🔁 锅炉液位实际值	32 位浮点数 IEEE 754	MD20
	🔁 锅炉液位给定值	32 位浮点数 IEEE 754	MD24
■ 🖻 🚽 内部变量	🔁 进水调节阀开度	32 位浮点数 IEEE 754	MD78
SIMATIC S7 PROTOCOL SUITE	🔁 VD1扰动	二进制变量	M0.1
	🛄 VD2扰动	二进制变量	M0.2
T H to destrict [The sup of (TT)	🔁 电磁阀停止	二进制变量	M0.3
	🛄 手自动切换	二进制变量	M0.4
	☐」进水操作量	32 位浮点数 IEEE 754	MD90
	🔁 上限报警	二进制变量	M0.6
	🛄 下限报警	二进制变量	M0.7
Find Slot PLC	🔁 出水调节阀开度	32 位浮点数 IEEE 754	MD86
	🔁 出水操作量	32 位浮点数 IEEE 754	MD82
±	🔁 进水流量	32 位浮点数 IEEE 754	MD94
	🔁 出水流量	32 位浮点数 IEEE 754	MD124
	🔁 VD1	二进制变量	A0.0
- 🔄 报警记录	🔁 VD2	二进制变量	A0.1
→			
₩ 父义策51 ▲ ha#左位的25			
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	1		

图 1-64 建立后的变量表

4. 创建的 WinCC 画面,如图 1-65 所示。



图 1-65 建立画面

#### (1) 启动画面设计

根据需要加入相应的文本框和按钮,建立"进入"按钮和"退出"按钮的链接。运行被激活后,此画 面为初始的画面。点击画面上的"进入",可以进入锅炉液位监视画面。点击"退出"按钮,系统取消激 活,退出运行状态。如图 1-66 所示。

· · · · · · · · · · · · · · · · · · ·	
其王profibus现及首任的描述规论	
·····································	
· · · · · · · · · · · · · · · · · · ·	<del> </del>
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	• • • • • • • • • • • • • • • • • • • •
a da da este en el est	
an a	
····· ·······························	- 退出运行
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

### 图 1-66 启动界面

(2) 监控画面设计

从图库选择需要插入的图形 Pipe、Valve,并建立对应地输入/输出域及设置相关按钮,进行在线控制。同时建立趋势曲线、报警、返回初始画面、退出运行四个按钮的链接。系统被激活后,锅筒液位的棒图可

以显示的液位高度,同时旁边的输入/输出域可以实时显示液位数值。点击画面下侧的各个按钮,可以进入 到不同地画面。图 1-67 为设计的主监控界面。



图 1-67 监控画面

(3) 趋势曲线画面设计

系统被激活后,此画面可以显示出锅筒液位给定值、实际值以及阀门开度的实时趋势曲线。

要建立 WinCC Online Trend,首先要建立变量记录。图 1-68 是设置的变量记录。在趋势曲线画面中,建立了锅筒液位趋势曲线和阀门开度趋势曲线。同时,对这三个变量建立了 WinCC Online Table。图 1-69 为趋势曲线画面。

■ み 巻 Pa 。 	Er BELIER   CO' N MCP	裕名称		修改时间 04/11/2009	09:28:52		
<b>,,,,, 」」归</b> 召 ● □□档組态							
. 变量名称	过程变量	· · · · · · · · · · · · · · · · · · ·	注释	修改时间	采集类型	提供变量	8
GD	锅炉液位给定值	模拟量		04/11/2009 09:29:1	周期 - 连续	系统	
KD	进水调节阀开度 锅泊滴位实际店	復 祖 量		04/12/2009 06:45:1	(周期-注鉄)	系统	
SJ							
53							

图 1-68 变量记录



图 1-69 趋势曲线画面

(4) 报警画面设计

因为液位值是模拟量,所以要对锅筒液位建立报警,首先要组态模拟量报警。设立的报警下限值应略 大于实际液位下限值,报警上限值应略小于实际液位上限值。因为锅炉液位下、上限值为0和500,所以 设立的报警下、上限值分别为50和450,如图1-70所示。

エ(口) 改通4時(日) 10,000(石) (日)昭(山) 工	具(I) 帮助(H)							
X Pa Ca 🖉 🔁 🖽 T	i 🗑 🔨 🗗 K	?						
🧱 消息块 🎦 消息类别	<b>A</b>	- <u>*</u> *						
· 模拟量报警 · 网络沙液位实际值	50	450						
M 组消息 合 归档组态								
编号 类别	类型	优先级	消息变量	消息位	状态变量	状态位	消息文本	锅
1 错误	报警	0		0		0	高液位	锅
2 错误	报警	0		0		0	低液位	锅

图 1-70 报警设置

设置报警文本时,需要注意文本信息颜色的选择,如图 1-71 所示。

型 ^{类型 1)}		?
」 消息类型的名称:	服警	
预览:	) 进入	文本颜色
	确认的	背景颜色
选择消息类型的	0名称,文本色和背景颜色	( <b>P</b> T
	确定	(円)

图 1-71 报警文本颜色设置

系统被激活后,当液位值低于下限或者高于上限时,系统自动报警。图 1-72 是组态后的液位报警画面。

								• • •
			纪	柏浦花	出数听达			
: : :			143	N ADC L	加其一社			
			· · · · · · · · · · · · · · ·					
11	∎G	31 🗊 🗖		ן 🗇	🛓 📑 🗾 📑		· 睂   ᢓ↓ 次	:::
11		日期	时间	编号	消息文本	锅炉		: : :
11	88	08-05-09	下午 01:11:12	88	TEXT	TEXT		:::
11	89	08-05-09	下午 01:11:12	89	TEXT	TEXT		:::
::	90	08-05-09	下午 01:11:12	90	TEXT	TEXT		: : :
	91	08-05-09	下午 01:11:12	91	TEXT	TEXT		
11	92	08-05-09	下午 01:11:12	92	TEXT	TEXT		
11	93	08-05-09	下午 01:11:12	93	TEXT	TEXT		:::
11	94	08-05-09	下午 01:11:12	94	TEXT	TEXT		:::
11	95	08-05-09	下午 01:11:12	95	TEXT	TEXT		:::
11	96	08-05-09	下午 01:11:12	96	TEXT	TEXT		:::
	97	08-05-09	下午 01:11:12	97	TEXT	TEXT		
11	98	08-05-09	下午 01:11:12	98	TEXT	TEXT		
11	99	08-05-09	下午 01:11:12	99	TEXT	TEXT		:::
11	▶ 100	08-05-09	下午 01:11:12	100	TEXT	TEXT		:::
11	0000 5	0 10.11			. 100			:::
::!	2009-5-	-8  13:11	ແມບ) ອານສະ:ບ	비명니				<u> </u>
: : :								: : :
		0.	0		:::::::: 进,			
					· · · · · · · <u>· · · · ·</u>	<u></u>		: : :
			· · · · · · · · · · · · · ·		::::::::::::::::::::::::::::::::::::::	λ 曲 4半	退山法行	
								: : :
					· · · · · · · · · · · ·			

图 1-72 报警画面

# 五. 系统运行

1. 系统开始运行,初始运行画面为"启动画面",如图 1-73 所示。

▶ WinCC-运行系统-	基于Profibus现场总线的模拟锅炉控制系统	<u></u> [
	进入监控 退出运行	

图 1-73 启动画面



2. 点击"进入监控"按钮,进入锅炉液位监控画面,如图 1-74 所示。

图 1-74 实时监控界面

**3. 点击"进入曲线"按钮**,进入趋势曲线画面,根据设定的参数,得到相应的趋势曲线,如图 1-75 所示。

植物植物 医肉酸 医肉肉 医白色素	AT MALE THE CLEMENT AND THE SHOP		1
8 IIII I4 44 PP PI I	æ ₽ •••   🚭 66		
500 4			
336 -			返回启动
252 -			
168 -			201 5 10 10
° 1			进入监控
09-05-11 14:07:12:000	14:07:45.030 14:08:18.6	66 14:08:52.000	
09-06-11 14:07 12:000 趋势在前景 GD	14:07:46.333 14:09:19.6	66 14:08 52:000	シュージョン 1日 日本
09-05-11 14:07:12:000 建設在前景 GD	14:07,45,333 14:08:18,6	66 14:00:52.000	进入报警
09-05-11 14:07:12:000 38397준배錄 cp (M2946 (S 751 82 35 55 10-01 19) 오 [11] 4 44 35 14	14:07:46.333 14:08:19.6	66 14:08:52.000	进入报警
09-05-11 14:07:12:000 海路功在前後 cp 155018(6:55 8:55 5:56 6:00년(11) 文 11 4 4 4 우 원 1 日秋八町南 2	14:07:45.033 14:00-10.6 2	66 14:08:52.000 <i>A</i>	进入报警
09-06-11 14:07:12:000 建築学在教授 GD 14:07:12:000 建築学校教 GD 14:07:12:000 14:07:12:000 日秋月/17:00 日秋月/17:00 日秋月/17:00	14:00'-46-000 14:00'-19, 6 6 6 6 14:00'-19, 6 14:00'-19, 7 14:00'-19, 7 14:00'-10, 7 14:00'-10, 7 14:00'-10, 7 14:00'-10, 7 14:00'	66 14:08:52.000	进入报警。
09-05-11 14:07122.000 神화왕在前景 cp (1959년 (19 전 12 20 15 전 114년 (11 ) (14 44 ) ) (14 14년 (11 1 ) (14 44 ) ) (14 14 14 14 14 14 14 14 14 14 14 14 14 1	14:00:45,003 14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:00:19,4 (14:	96 14:09:52.000 A	进入报警
09-08-11 14:07:12.000 通知先前景 co 0%5%前 (2,21 % a, 5 m m m m m 全国 14 44 P P 1 日間 14 44 P P 1 日間 14 44 P P 1	14:00:45.383 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:00:35.4 14:0	66 14:09:52.000	进入报警

图 1-75 趋势曲线

4. 点击"报警"按钮,进入报警画面。如图 1-76 所示。

			11/1 // //X	12.1区音1	11 f¥.		 	_
間の当	10 V V V	2 18 3 (編→ (編→)	□ ● ● □ □ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	前 開 開 世 協約	2 🕼 🙆 👌	1. 1.		
1 11-05- 2 11-05-	09 下午 02:4 09 下午 03:2	6:24 2 4:33 1	低液位	锅炉 锅炉				

# 六. 小结

系统的软硬件调试已通,基本达到预期设计目的,但如果采用的模糊等级更多些,系统的控制效果会更 好。总结系统设计步骤如下:

- (1) 分析系统并制定控制方案;
- (2) 设计现场总线控制系统,选择控制器等硬件装置;
- (3) 组态系统硬件、软件及网络通信;
- (4) 组态系统监控界面;
- (5)检查系统通信正常,下载系统硬件、软件;
- (6) 系统调试,得到系统的实时监控画面;
- (7) 显示系统主要参数的趋势曲线;
- (8)显示系统的参数报警界面。

# 第四节 基于 PC 的 PLC 控制电加热炉系统设计与实现

# 一、系统的网络结构、硬件结构及软件关系

### 1. 系统网络结构

如图 1-77 所示,本实验系统的网络由两个层次构成,即现场级和控制级。现场级由远程 I/O ET200S 作为 PROFIBUS-DP 从站,控制级为基于 PC 的 PLC——WinAC Slot 型控制器,属于 PROFIBUS-DP 主站。



图 1-77 实验系统的网络层次图

# 2. 系统硬件结构

图 1-78 所示电加热炉单回路控制系统的结构方框图。



系统的被控对象是实验用的电加热炉,用来模拟工业上的加热钢样的加热炉,其外观图如图 1-79 所

示。



图 1-79 电加热炉及 LTF-2A 型温度场控制装置外观图

图 1-80 电加热炉结构图

电加热炉的内部结构如图 1-80 所示,其中瓷套管的上部和下部各绕一组 750W 的电热丝,为对象的"双输入",加热对象为钢试样及其夹头,试样中部相距 2.5-5CM 处有二根测温热电偶,为对象的"双输出"。 本控制系统只对该电加热炉的其中一个电加热丝进行加热,组成单回路控制系统。

由基于 PC 的 PLC——西门子 WinAC Slot 作为系统的控制器,其插板安装在工控机内;在电加热炉现场配有 LTF-2A 型温度场控制装置,如图 1-79 所示,内部有仪表控制和工控机控制两种类型控制方案的切换按钮,系统的详细接线图见附图。

系统的远程 I/O 裝置选用西门子公司的 SIMATIC ET200S 系列分布式 I/O 模块,作为 PROFIBUS-DP 从站。ET200S 采用离散式模块化设计,在 PROFIBUS-DP 接口模块 IM151 之后可以插入最多 64 个任意组合的 I/O 模块,本系统选用了开关量输入模块、开关量输出模块、模拟量输入模块、模拟量输出模块。ET200S 背板总线采用了先进的传输技术,确保 PROFIBUS-DP 达到 12Mbps 的传输速率。ET200S 的外观图如图 1-81 所示。



图 1-81 ET200S 外观图



图 1-82 光电耦合器

由于工业现场有许多外部设备,如大功率直流电机、接触器等,在启动或开关过程中会产生很强的电磁干扰信号,如不加以隔离,可能会使微型计算机控制系统造成误动作乃至损坏。因此,本系统在输入、输出环节接口中接入光电隔离器,其外观如图 1-82 所示。光电隔离器也称光电耦合器,简称光耦,是一种以光为耦合媒介,通过光信号的传递来实现输入与输出间电隔离的器件,可以在电路或系统之间传输电信号,同时确保这些电路或系统彼此间的电绝缘。本系统采用了 M5VS-AA-R 型有源光电隔离器。

电加热炉内部钢样的温度由传感器测得,并转换为电信号输入到 LTF-2A 型温度场控制装置内,再经 过变送器件成为标准的 4-20mA 电流信号和 0-5V 电压信号,输出给现场的远程 I/0 模块;系统的执行器是 晶闸管器件,也安装于 LTF-2A 型温度场控制装置内。

### 3. 系统使用的软件

本系统使用西门子的 STEP7 软件完成硬件组态和控制程序的编写;用西门子的 WinAC 软件的 Computing 子软件实现对控制过程的监控和操作。这两个软件均安装在工控机中,它们之间的关系图如图 1-83 所示。 由上面说明可知,本系统采用基于 PC 的 PLC,西门子的 WinAC Slot 板卡插于该工控机的 PCI 插槽,因此,此工控机既做控制器使用,同时又作为操作员站使用,WinAC Slot 板卡的安放以及与远程 I/0 的连接在 图 1-83 中也有显示。



图 1-83 控制系统软件关系图

# 二、实验实施步骤

# 1. 硬件组态

(1) 创建工程, 插入站点

双击进入 SIMATIC Manager (项目管理器)开始创建一个新的 STEP7 项目。打开管理器后通过新建项目向导的方式来完成项目的创建。输入项目名称"libaozheng"。在此项目上单击鼠标右键,插入基于 PC 的 PLC 站点: "SIMATIC PC Station",如图 1-84 所示。

SIM/	ATIC Manager - [libaozhei	ng (Componen	t view) D:\biyesheji\lib	aozheng]
Eile	Edit Insert PLC View	Options Windo	w <u>H</u> elp	
	; <u>81 - X</u> BE	🛍 🔍 🖳		<pre>&lt; No Filter &gt;</pre>
- <b>-</b>	libaozheng			
	Cut	Ctrl+X		
		Ctrl+C		
		Ctrl+V		
	Delete	Del		
	Insert New Object	Þ	SIMATIC 400 Station	
	PLC	+	SIMATIC 300 Station	
	SIMATIC DOM	•	SIMATIC H Station	
	DIMETICI DA	·	SIMATIC PC Station	
	Rename	F2	SIMATIC HMI Station	
	Object Properties	Alt+Return	Other station	
	Create PROFInet Interface		SIMATIC 55	
	Create PROFInet component		SIMATIC 200 Station	
-				
1			MPI	
1			PROFIBUS	
1			Industrial Ethernet	
1			PIP	
1			S7 Program	
			M7 Program	

图 1-84 插入 SIMATIC PC 站

为下面通信方便,将默认名"SIMATIC PC Station(1)改成本机名"zdh28"(使用的工控机名称)。在 SIMATIC Manager 左边浏览窗口中选择站点,双击右边数据窗口的"Configuration",打开硬件组态编 辑器。

(2) 主站和从站的组态

在硬件组态窗口中选择右边的硬件目录,并从中选择 CPU412-2 PCI V2.1 并把它拖放到机架的第三个 插槽上,如图 1-85 所示,即 CPU412-2 PCI 型的 WinAC Slot 作为控制系统的主站。

选择 PROFIBUS (1)总线,并设置总线参数。选择远程 I/O 模块 ET200S 作为 DP 从站。其通信模块为 IM151-1,按照现场使用的 IM151-1 和 I/O 模块的订货号在元件库中进行选择,各器件的型号和订货号如下:

通信模块 IM151:

电源模块 PE: PM-E DC24/48V/AC24V 6ES1-138-4CB10-0AB0

模拟量输入模块 AI: 2AI I 4WIPE ST 6ES1-134-4GB10-0AB0

数字量输入模块 DI: 2DI DC24V ST 6ES1-1318-4BB00-0AA0

模拟量输出模块 AO: 2AO I ST 6ES1-135-4GB00-0AB0

数字量输出模块 DO: 2D0 DC24V/0.5A ST 6ES1-132-4BB00-0AA0

将各个模块拖入相应的机架插槽,检查无误后,单击硬件组态窗口中的按钮 🖳 (或选择菜单 "Station->Save and Compile)保存并编译组态信息。

50

SIMATIC Manager - [libaoz Bh] Station Edit Insert BLC	heng (Component view) D: Yew Options Window Help Ballet An An I To To	\biyesheji\li	baozheng]						X X
(0) 2C     (1)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)		OPTEVS (1): 1	IP master sy	iten (l)		•	Eind: Erofil	ET 2005 Standard	xe : tatat x
4         5           6         -           7         -           8         -           9         -           10         -						Ţ			Lin (Accord) ST           Lin (Scord) ST           Lin (Scord) WF           Di (Scord) Scord) WF           Di (Scord) Scord) Scord WF           Di (Scord) Scord WF </td
(1) IM151-1 Stan	dar d				Peck Addresses			8 🕒 71 8 🛄 10	4D0 DC24V/0,5A ST 4D0 DC24V/2A ST -SERCE
S         Module           1         PM-E DC24/48W/ AC2           2         2.4XI I 4NTRE ST           3         2DI DC24V ST           4         2A0 I ST           5         2DD DC24V/0, 5A ST           6	Order Number 4EEST 138-4CB10-0AB0 8EST 134-4GB10-0AB0 8EST 131-4BB00-0AA0 6EST 131-4CB00-0AA0 6EST 132-4BB00-0AA0	I Add 512515 0.00.1	Q Address 512515 0.00.1	Comment		•		B- 10151-	PM-E DC24. 48V PM-E DC24. 48V/ AC24. 230 PM-E DC24. 48V/ AC24. 230 PM-E DC24V 1. Standard

图 1-85 硬件组态图

(3) 组态信息下载

在硬件组态信息下载之前,必须按要求设置通信通道。在 SIMATIC Manager 程序中,选择菜单"Options" -> "Set PG/PC interface"打开 Set PG/PC interface"对话框,将 "S70NLINE (Step7)"的访问点设 置成 "PC internal(local)"如图 1-86 所示,单击 "OK"关闭此对话框。

TONLINE (STEP T)> PC	internal Gocal
STEP 7 的标准设直) 2使用的接口参数分配 (2): C internal (local)	/展性(E)
Iso Ind. Ethernet -> Realtek       PC/PPI cable (PPI)	
在该PG/PC中与SIMATIC组件通讯) 接口 添加/册版::	<b>选择</b> (2)

图 1-86 设置通信通道

	Fare	Тури	Bing	Status	Ban/Stop	Cenn	R.
_ <u>k</u> _							
- 20	I CHI 412-2 PCT	CHI 410-2		112			
4	a crowne - rer	140 410 A.					
5							
6							
7	Station name					×	1
8						1	
- 2-	20203					_	
- 10						-	
12	21					100	
13	1		E	ucel	Help	- 6	
	-	1		1	1	1	
14							
14							
14							
14							
14	644	200	fill à	Easter (	an s	Server Stat	ł
14	641	2011	1	Easter .	1	Hong SH	1

图 1-87 修改 station name

双击桌面上的"Station Configurator"图标,将"station name"改为硬件组态中站点的名称,即"zdh28",如图1-87所示。

			S < Bo Filter >	- 223		<u></u>	
B) Liberadang B) B, 1430 B) B, 1450 B) CPR US-0 KI B) B, 1450 B) CPR US-0 KI B) Startes B) Startes B) Startes	System data	681	ត្តភាព	₽ ³⁷¹⁰⁵	P PCIOS	⊖ [™]	€ var_t

图 1-88 通信通道设置成功后的项目管理器图

至此完成了硬件组态和硬件信息下载。

#### 2. 用户程序编写

系统采用 STEP7 软件编写控制程序,编程语言主要有梯形图、语句表和功能块图等类型。用户程序一 般由组织块(OB)、功能块(FB)、功能(FC)、数据块(DB)等构成。OB1 作为主程序循环块是必需的,将 所有的程序放入 OB1 中进行编程。编程时地址的设置方式有绝对地址法和符号地址法两种,本系统同时采 用了这两种方法。使用符号地址一方面寻找变量比较方便、直观,另一方面便于在后边实现 Computing 软 件与控制引擎进行变量的连接。根据过程控制的复杂程度,编程方式分为线性化编程、模块化编程和结构 化编程,本系统采用比较简单的线性化编程方式。

(1) 建立符号表

首先为系统中的各个变量建立符号表,分配地址。在"Getting Started"项目窗口查找到 S7 程序, 然后双击打开符号组件。在符号表中,为所有要在程序中寻址的绝对地址分配符号名和数据类型,各个变 量分别设置符号地址和绝对地址。如图 1-89 所示。

1	Statu	Symbol /	Add	lress	Data typ	Comment
1		DB41-D_SEL	M	92	BOOL	
2		DB41-ER	MD	Sort tab	le ascending/o	descending a
3		DB41-GAIN	MD	25	DWORD	
4		DB41-I_SEL	M	20402	BOOL	
5		DB41-LMN	MD	40	DWORD	
6		DB41-MAN_ON	M		BOOL	
7		DB41-P_SEL	M	•3•5•	BOOL	
8	1	DB41-SP_INT	MD	20	DWORD	
9		DB41-TD	MD	35	DWORD	
10		DB41-TI	MD	30	DWORD	
11		FC105OUT	MD	15	DWORD	
12		FC105RET	MW	10	WORD	
13		FC105-BIPOLAR	M		BOOL	
14		FC105-IN	PIW	512	WORD	
15		FC106-OUT	PQW	512	WORD	
16		FC106-RET	MW	50	WORD	
17						

图 1-89 符号表

(2) 编写用户程序

本系统对电加热炉实施单回路控制,采用 PID 控制算法,由于控制算法比较简单,用户程序设计使用 梯形图编程语言、线性化编程方式。在组织块 0B1 中先后调用 FC105、FB41 和 FC106, FC105 是 "SCALE" 模块,将来自 A0模块的整型值转换为工程中的实型温度值,输入给 PID 运算的模块 FB41,FC106 是"UNSCALE" 模块,将 FB41 模块的输出值再转换成整型值,输送给 A0 模块。用户程序梯形图如图 1-90 所示。

52



图 1-90 用户程序

(3) 用户程序下载到 WinAC Slot

分别将硬件组态与软件组态下载。在离线窗口中选择 Blocks 文件夹,然后用菜单命令 PLC > 下载,将程序下载到 CPU,即 WinAC Slot。完成下载后,按照图 1-91 所示 WinAC 控制面板路径打开 Win AC Slot 控制面板。将操作开关转到 RUN-P 位置, "RUN"点亮, "STOP" 熄灭, CPU 处于试运行工作状态。



图 1-91 启动控制面板的路径及控制面板图

#### (4) 使用变量表进行控制程序的初步调试

通过监视和修改各个程序的变量来对它们进行测试。在打开的 SIMATIC 管理器以及"Getting Started 离线"项目窗口,找到 Blocks 文件夹,鼠标右工具栏中的键单击窗口右半边。使用鼠标右键的弹出菜单 插入一个变量表 VAT1。用确定关闭"属性"对话框,接受缺省设置。双击打开 VAT1,输入需要监控变量 的绝对地址、数据类型及设定初始值等。如图 1-92 所示,单击 图标,将变量表切换到在线方式建立与 已组态的 CPU 之间的连接;单击 图标,对变量进行监视;单击 图标在线修改变量设定值。

52	VAT1 -	- @zyl∖zy	d\CPU 412-2 PCI\5	7 Program(2) ONLI	NE
	📩 Ado	iress	Display format	Status value	Modify value
1	PIW	512	DEC	592	
2	M	0.0	BOOL	false	false
з	м	0.1	BOOL	false	false
4	M	0.2	BOOL	true	true
5	M	0.3	BOOL	false	false
6	M	0.4	BOOL	false	false
7	MW	10	HEX	W#16#0000	
8	MW	55	HEX	W#16#0000	
9	MD	10	FLOATING_POINT	0.0	
10	MD	15	FLOATING_POINT	21.26736	
11	MD	20	FLOATING_POINT	50.0	50.0
12	MD	25	FLOATING_POINT	10.0	10.0
13	MD	30	TIME	T#Oms	
14	MD	35	TIME	T#Oms	
15	MD	40	FLOATING_POINT	100.0	
16	MD	45	FLOATING_POINT	28.73264	
17	MD	50	FLOATING_POINT	0.0	
18	PQW	512	HEX	øa	
19					
			<u>.</u>		<u>-</u>

图 1-92 用变量表测试程序

#### COMPUTING 屋性 ? × 🔁 Access point Access point: COMPUTING Associated interface parameter assignment PC internal flocal) -Module KBUS If you change an access point of a PROFIBUS module to another interface parameter assignment of the same module, all other access points that point to the old interface parameter assignment. will be remapped to the new interface parameter assignment. 61) 确定 应用(k) 取消 帮助

图 1-93 设置 WinAC Computing 的访问站点

#### 3. 系统监控功能的实现

(1) 设置Computing 的访问接口

在使用 WinAC Computing 完成系统监控功能之前,应对 Computing 的访问点进行设置。启动 SIMATIC NET 下的设置程序"Configuration Console",选择"Access points",双击右边数据窗口的"Computing" 行,从打开的对话框中选择"PC internal(local)",单击"OK"关闭对话框,结果如图 1-93 所示。

基于 PC 的 PLC 控制器(即 WinAC Slot)和 WinAC Computing 可以安装在不同的 PC 机上,以支持远程访问 WinAC Slot 的数据。不论 WinAC Slot 与 WinAC Computing 是否安装在同一 PC 机上,都要将 Computing 的访问接口设成 "PC internal(local)"。

(2) "Computing Configuration" 设置

使用 WinAC Computing OPC Server 前应设置 OPC 服务器。点击"start"->"Simatic"->"PC Based Control"->"Computing Configuration"打开 Computing 的设置程序,在"OPC"选项卡上有一连接选择项,选择是通过变量文件连接还是直接连接,如图 1-94 所示。

如果采用直接连接,则有两项内容需要输入:

Computer name: "<Local>"

Control Engine: WinAC 控制器的类型, WinAC Slot 则输入"wcS7=3"



图 1-94 "Computing Configuration" 设置

#### 图 1-95 选择 step7 源程序

(3) 建立标签文件

如果选择通过变量文件连接,则需要使用标签文件,标签文件不但可以采用符号的方式访问 WinAC 控制器中的数据,还可以使用 OPC 客户端程序访问多个 WinAC Slot 中的数据。先前在 Step7 中已经定义了符号表,现在即可在 WinAC 中组态标签。单击"PC Based Control"下的"Computing TagFile Configurator",打开 WinAC 的符号表编辑器,程序自动新建一个标签文件。右键单击此标签文件视图窗口的左边,从弹出菜单中选择"Insert Program",打开选择 step7 源程序的对话框如图 18 所示,从中选择要进行 WinAC 符号标定的程序,单击按钮 这将文件选入右边窗口。结果如图 1-95 所示,从中可以看到 Step7 符号表中的变量已包含其中。右键单击窗口左边的文件"ZDH_CPU_412-2 PCI",从菜单中选择"Edit",打开"control Engine Configuration"对话框,设置如图 1-96 中所示。



			P.	
OFF F	OFF.	OFF	Jetails (b. Front - Xar Y - Eng that of the wrest	front II (Dente
	<u>1 1 1 1 )</u>  .	000	Format & fact & then	fals as low

图 1-96 控制引擎设置

图 1-97 软容器中插入的相应控件

在同一标签文件下添加新的文件并进行设置,完成后存盘退出。标签文件的扩展名为.tsd。标签文件 创建后便可与标签源文件连接,之后可以通过符号的方式访问 WinAC Slot 控制器中的数据。

(4) 在软容器 Computing SoftContainer 插入需要监控的变量

Computing SoftContainer 是一个 OLE 容器,在它的窗体上可以放置 WinAC Computing 提供的 ActiveX 控件。使用 Computing SoftContainer 可以生成简单实用的 HMI 界面窗口。

运行程序组 "PC Based Control"下的程序 Computing SoftContainer。在 Computing SoftContainer 的工具栏上除了常规的按钮以外还有 WinAC Computing 所带的 ActiveX 控件图标,这些 ActiveX 控件还可用在可作为 OLE 容器的程序上。

首先在窗体上添加 Data 和相应控件,在工具栏中单击各控件图标,分别放到适当位置,如图 1-97 所示。各个控件的功能和含义如下:

1)数据(Data) 控件:提供与控制引擎(WinAC-Slot)的连接。

2) 按钮(Button) 控件: 连接控制引擎的位地址,实现读写两种方式,这里用于显示 P、I、D 的状态, 绿色代表 1(功能加入),红色代表 0(功能取消)。

3)编辑(Edit)控件:与控制引擎的存储器相连,可以读写字和双字变量,既可以反映控制的变量, 又可以修改控制器的变量;既可以反映过程值,也可以反映给定值。这里插入四个编辑控件,其中一个用 于显示过程反馈信号,另外三个用于显示和修改 P、I、D 状态值。

4)标签(Label) 控件: 与控制引擎相连, 仅能用于显示, 把任何过程值转换成字符串并显示出来, 这里用于显示 P、I、D 的状态。

5) 滑块(Slider) 控件:可以读写控制引擎存储器字和双字变量,可以平滑连续地调节,这里用于调节给定值。

6) S7 诊断缓冲(**DBuffer**) 控件:用以显示控制器 WinAC-Slot 的诊断缓冲器中的内容,**DBuffer** 控件直接连到控制器,而不像上述几个控件那样使用数据控件做连接。



ontrols:	Assigned <u>V</u> ariable:	
S7Soft1	zyl_CPU_412-2_PCI.DB41-P_SEL	
- Value - Button2 - Yalue - Button3	Update rate (ms): 100 Dead <u>b</u> and: 0 Automatic write mode: 0	
Add Delete Filter	Apply filter to propertie	

图 1-98 选择连接方式为标签连接

图 1-99 设置对象的 value 属性值

双击窗体上的 Data 对象,从弹出的窗口中选择"Engine"选项卡,选择通过标签文件进行连接,选择上节保存的文件名作为标签文件,如图 1-98 所示。

选中 Connections 选项卡,用 Browse 查找标签文件,如图 1-95 所示。分别设置对象的 value 属性 值,如图 1-99 所示,单击"OK"退出设置窗口。

鼠标单击工具栏上的运行按钮▶,使软容器平台运行,结果如图 1-100 所示,这就是一个简单系统监 控画面。从图中可以看出,由滑块设定的温度给定值是 60,现场温度反馈值为 62.066,由按钮控件和编 辑控件同时设定并现实的 P、I、D 状态为纯比例控制,由标签控件也显示出了 P、I、D 的状态。

ON	OFF	So.         Time         Data         Sound           2         00.205 % UT         1994-1-1         Radie two         Not           3         00.205 % UT         1994-1-1         Radie two         Not         Not           4         00.205 % 107         1994-1-1         Regeter 1         Regter 1         Regeter 1	attion from STARUP to BUB Less one backey battery E or markal wars restort wition from STOF to STARUP go information in STOP mode ed I/Os: station return
1 p 1.e Fale	0 Falce	Details On Event: 1/20 Back transition from SIGNUP to HUM Forty information - Take for these steps of the last num backs - Take for these steps of the - Take restart triggered by which satting - the restart triggered by mich satting - this has not restart ponettic - and the start triggered by the start - and triggered by the start triggered by the start - and triggered by the start triggered by the start - and triggered by the start triggered by the start - and triggered by the start triggered by the start - and triggered by the start triggered by the start triggered by the start - and triggered by the start triggered by tr	Event ID: 16H 4000
<u></u>	F2 066	Format (* Text (* Kee Update Language Anglish #	Help on Ivent

图 1-100 Computing SoftContainer 的运行效果

本系统采用基于 PC 的 PLC——WinAC-Slot,把控制功能、监控功能、数据处理、通讯等功能集成在 一台工业 PC 机中,具有与传统 PC 完全一样的实时特性,集成了 PLC 和 PC 的优点,提高了与 PLC 的通 讯速度,具有高可靠性、易维护、可扩展和易操作等特点。西门子的 WinAC 软件不仅可以完成控制功能, 而且可以用它的 SIMATIC Computing 子软件实现人机交互功能,完成对过程变量的监控及在线修改控制 参数等。如果结合 VB 软件、ACCESS 数据库,还可以在人机界面上完成系统的实时响应曲线,更好地反 映系统的运行情况。





4、原位表设置的输出限制OUTL已不起作用,请在工控机软件中将最大输出限制在80%,以延长电 热丝的寿命。