S7-200 SMART在红外线桥切机上的应用

The Application of S7-200 SMART in Frared Bidge Cutting Machine

福建华拓自动化技术有限公司 赵春华 王雪林

Zhao Chunhua Wang Xuelin

摘 要:根据红外线桥切机的工艺流程及控制要求,结合现场控制工艺需求,分析了硬件配置以及 软件控制流程,设计了一套基于S7-200 SMART的控制系统。经过实际运行中的测试,该控制系 统工作稳定,生产效率高,满足控制工艺需求。

关键词: S7-200 SMART 红外线桥切机 控制

Abstract: According to the working process and control demands of infrared bridge cutting machine, this paper designed a set of control system based on S7-200 SMART and analyzed the hardware configuration and software control process. The control system can meet the demand of control process, work stably and produce efficiently, during the actual operation.

Key words: S7–200 SMART Infrared bridge cutting machine 【中图分类号】TU632 【文献标识码】B 文章编号1606-5123(2014)09-0023-03

引言

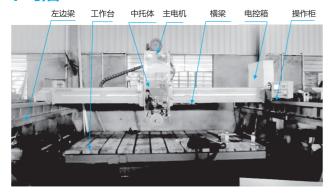


图1 桥切机

红外线桥切机的主要功能是将磨光 后的毛板根据要求快速准确的切割成所 需的标准规格板;可适用于花岗岩、大 理石、水泥制品、 石棉制品或其他 建筑材料; 生产过 程中,无超标的污 染源,冷却水可循 环使用,切割后产 生的石粉, 沉淀后 可作为建筑填料使 用。

该设备主要 由横梁、边梁、

中托体、纵横向传动机构、升降传动机 构、工作台、液压控制系统、电控柜等 组成,装备现场图片如图1所示。

2 工艺系统分析

2.1 装备数据设计

总功率20kW; 工作电压: AC380V; 切割速度: 50m/s; 工作压 力:约0.7Mpa;横向行程:3400mm; 纵向行程: 2500mm; 升降行程: 250mm; 重量: 约6200kg; 外形尺寸: $6000 \times 4800 \times 2600$ mm.

2.2 工艺原理

横梁跨于左右边梁之上, 中托体能 够在横梁上平滑地运动,实现对毛板的 切割; 左右边梁由水泥基础或钢架来支 撑,横梁在边梁上做纵向运动,可实现

纵向分片; 中托体是行走在横梁上的部件, 其通过升降滑板 能做上下运动,来实现切割时的进刀动作;工作台由液压站 为其提供动力源,为使大型板材平稳安全地置于工作台上, 工作台可做0°到85°的上下翻转。上下翻转归于0°后,工 作台可在水平方向0°与90°间任意旋转,从而保证被切割板 材的平行与垂直。工艺流程图2所示。

图2中横梁在前移或后移动的过程中, 若碰到极限位开 关,则停止,退出自动状态;工作台的控制如上下翻,左右 转动均是在手动控制模式下。

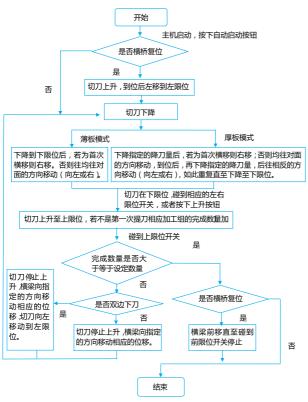


图2 工艺流程图

3 硬件解决方案

该设备实际I/O点数包含24个数字量输入和14个数字量 输出。西门子S7-200 SMART的经济型CPU CR40(24DI/16DO) 即客户既保证了设备的品牌效应,成本方面也得到很好的控 制,提升了设备在竞争激烈的桥切机行业的竞争力。同时 Micro SD卡更新程序的功能为设备厂商售后服务成本的降低 也提供了很好的途径。

该设备原先使用文本显示器,改为SMART LINE触摸屏 后,不仅操作更为方便、直观,实现了原先文本达不到的功能, 而且使设备整体提升了一个档次,显得更为智能、人性化。

PLC与汇川变频器间采用多段速、提前停车控制方式, 使设备横梁能快速、平稳、精确地运动到目标位置,以较低 的成本解决了桥切机定位的难点。

PLC系统I/O变量定义如附表所示。电控柜图片如图3所示。

附表 I/O变量定义

附表 I/O受重定义			
输入点		输出点	
10.0	前后编码器A相	Q0.0	油泵控制
I0.1	前后编码器B相	Q0.1	右移控制
10.2	分片方向选择	Q0.2	左移控制
I0.3	主机运行按钮	Q0.3	左右移慢速控制
I0.4	右移限位	Q0.4	
10.5	左移限位	Q0.5	前后移慢速控制
10.6	上刀限位	Q0.6	前移控制
I0.7	下刀限位	Q0.7	后移控制
I1.0	前移限位	Q1.0	上刀控制
I1.1	后移限位	Q1.1	下刀控制
I1.2	总停止按钮	Q1.2	主机运行
I1.3	变频器故障检测	Q1.3	工作台左转
I1.4	上刀按钮	Q1.4	
I1.5	下刀按钮	Q1.5	工作台右转
I1.6	右移按钮	Q1.6	工作台向上控制
I1.7	左移按钮	Q1.7	工作台向下控制
I2.0	前移按钮		
I2.1	后移按钮		
I2.2	自动启动按钮		
I2.3	点动联动选择		
I2.4	工作台正转按钮		
I2.5	工作台反转按钮		
I2.6	工作台向上按钮		
I2.7	工作台向下按钮		

图3 电控柜一览图

4 软件开发

4.1 PLC程序设计

PLC程序设计上分为初始化、数据处理、逻辑控制、故

障报警、IO输出几部分组成,初始化部分完成部分参数的 开机复位,以及高速计数器的初始化;数据处理部分完成编 码器脉冲数与加工尺寸的转换,以及自动时从加工表格中提 取当前加工尺寸;逻辑控制部分控制桥切机的手动或自动工 作; 故障报警部分输出桥切机的报警信息; IO输出部分直接 控制PLC的输出。

程序开发的难点有:该设备的工作模式比较多,且自动 时能相互切换,如果用顺控指令处理显得较为繁琐;根据横 梁不同的速度,算出相应的惯性滑行量,使横梁提前停车,以 保证横梁快速,平稳定位。重点是两加工表格的处理,自动时 需过滤无效的参数组,如加工尺寸不为0,但加工数量为0。并 且传递相应的加工尺寸,及计数各规格产品已完成数量。

案例说明(1): 采用结构化编程,上为主程序Main,如图 4所示。

图4 主程序图

案例说明(2): 高速计数器处理部分, 把求得的脉冲数转 换成相应的位移,如图5所示:

图5 计数处理程序图

4.2 HMI程序设计

HMI画面分为主画面、参数设定、状态监控、报警画面 四部分组成,有开机画面、主画面、报警记录、系统参数、 参数设定、输出状态监控、输入状态监控、0°切割数据、 90°切割数据画面组成,总共9页,89个变量。开机画面显示 设备制造厂商的地址、联系方式等信息;通过主画面可以手 动操作设备,以及设备当前的加工数据;输入输出画面可以 查看设备当前IO信号状态,以辅助设备维修;0°及90°切割 数据画面可以设定桥切的各种产品的加工规格及数量; 通过 参数设定画面可以设定设备的一些重要参数;报警记录画面

显示设备报警信息。

案例说明(1): 装备主画面如图6所示。

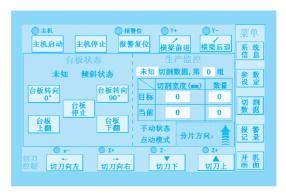


图6 主画面图

案列说明(2): 设备工作台在0°时的切割数据,如图7所示。

图7 在0°时的切割数据画面

5 结束语

S7-200 SMART的编程软件STEP 7-Micro/WIN SMART在 设计上比以往更为美观、人性化,有利于提高编程人员的工 作效率: 以太网接口的使用, 使用户只需一条普通的以太网 线便可以下载, 无需购买专用的下载线, 且下载速度超快, 又稳定。S7-200 SMART使用普通Micro SD卡,而不是专用 的微存储卡,这些设计在一定程度上降低了使用者的门槛。 SMART LINE触摸屏经济适用,既控制了成本也保证了品 牌,和S7-200 SMART配套使用特别方便。

作者简介

赵春华 男 工学学士 工程师, 现就职于福建华拓自动化 技术有限公司,主要研究方向为工业自动化系统集成工程领域。

参考文献(略)