

Smart 200 楼控系统应用

单位:河北唐仪自控设备有限公司 作者姓名:谭伟

摘要: smart 200 在楼控系统中和 HMI 以及组态软件的连接

关键词: smart 200, 200CN, smart 700 IE, 组态王, FameView。

1 项目介绍

本项目主要是通过现场 PLC 采集楼宇设备的数据信息,传至终端 HMI 设备和上位机 组态软件的一套控制系统,由于客户对项目的要求不同,所采用的设备也会不同。如果 不是为了项目需要,我们大多采用的设备是西门子的 PLC---200CN 配套 smart 700 IE。

现在通过工控网申请了一套 smart 200 产品准备试用,主要是看中了这套产品的一些 新的特性。本次所测试的设备主要包括:

下位机设备 PLC----smart 200

HMI 设备-----smart 700 IE

上位机组态软件-----组态王和 FameView

目的是为了测试 smart 200 相对于 200CN 的优点与缺点。

2 工艺原理

本项目主要控制楼宇系统中的泳池水温与水量。有以下测点:一套控制阀门,四个 管网温度,一个室外温度,四个管网压力,两套循环泵系统,两套补水泵系统,三个管 网流量,一套自来水补水系统。主要工艺要求是,通过一个温度控制阀门的开度,使温 度保持恒定;通过管网的压力控制补水泵的转速,使泳池的用水量保持足够。其中补水 系统多是为了补充泳池内淋浴系统的水量供应。

3 方案选型

根据以上说明,可概括出本系统AI点27个,AO点6个,DI点13个,DO点5个。

- 1 -

		接线方	
序号	名称	式	J
1	一次供水温度	2线制	
2	一次回水温度	2线制	
3	二次供水温度	2线制	
4	二次回水温度	2线制	
5	一次供水压力	2线制	
6	一次回水压力	2线制	
7	二次供水压力	2线制	
8	二次回水压力	2线制	J
9	室外温度	2线制	
10	一次网流量	2线制	
11	二次网流量	2线制	
12	补水流量	2线制	
13	循环泵 1#频率反馈	4 线制	
14	循环泵 2#频率反馈	4 线制	
15	循环泵 1#电流反馈	4 线制	
16	循环泵 2#电流反馈	4 线制	
17	补水泵 1#频率反馈	4 线制	
18	补水泵 2#频率反馈	4 线制	
19	补水泵 1#电流反馈	4 线制	
20	补水泵 2#电流反馈	4 线制	
21	循环泵 1#电机温度	4 线制	
22	循环泵 2#电机温度	4线制	J
23	补水泵 1#电机温度	4 线制	
24	补水泵 2#电机温度	4线制	
25	供水阀门反馈	4 线制	
26	泄水阀门反馈	4线制	
27	液位	2线制	

	序号	名称	接线方式
	1	循环泵 1#频率给定	4 线制
	2	循环泵 2#频率给定	5 线制
	3	补水泵 1#频率给定	6线制
	4	补水泵 2#频率给定	7线制
	5	供水阀门开度给定	8线制
	6	泄水阀门开度给定	9 线制
	序号	名称	接线方式
	1	循环泵 1#故障	开关
	2	循环泵 2#故障	开关
	3	补水泵 1#故障	开关
	4	补水泵 2#故障	开关
	5	循环泵 1#远程就地	开关
	6	循环泵 2#远程就地	开关
	7	补水泵 1#远程就地	开关
	8	补水泵 2#远程就地	开关
	9	循环泵 1#运行	开关
	10	循环泵 2#运行	开关
	11	补水泵 1#运行	开关
	12	补水泵 2#运行	开关
	13	水箱补水阀门状态	开关
	序号	名称	接线方式
	1	循环泵 1#启停	开关
	2	循环泵 2#启停	开关
	3	补水泵 1#启停	开关
	4	补水泵 2#启停	开关
7.1-	5	水箱补水阀门开关	开关
杀狁			

Smart 200 设备选型

	模块	版本	输入	输出	订货号
CPU	CPU ST20 (DC/DC/DC)	V02.00.00_00.00	10.0	Q0.0	6ES7 288-1ST20-0AA0
SB	SB AQ01 (1AQ)			AQW12	6ES7 288-5AQ01-0AA0
EM 0	EM AE04 (4AI)		AlW16		6ES7 288-3AE04-0AA0
EM 1	EM AE04 (4AI)		AlW32		6ES7 288-3AE04-0AA0
EM 2	EM AE04 (4AI)		AlW48		6ES7 288-3AE04-0AA0
EM 3	EM AM06 (4AI / 2AQ)		AlW64	AQW64	6ES7 288-3AM06-0AA0
EM 4	EM AM06 (4AI / 2AQ)		AlW16	AQW16	6ES7 288-3AM06-0AA0
EM 5	EM AM06 (4AI / 2AQ)		AlW16	AQW16	6ES7 288-3AM06-0AA0
					·

- 2 -

由于 Smart 200 最多只能带六个模块,而每个模块的模拟量输入点最多也就 4 个,我 们这套系统采用 PLC 扩展的最多配置还是不能满足要求,如果真的使用 Smart 200,只能 采用双 CPU 模式。

我申请了以上配置的全套的模块,最后只给了两个----一个 CPU,一个 AM06。现在 手里只有两个模块,我没有办法完成上面的预想计划,由于条件所限,在这里只选用了 以下的配置,完成几个简单的功能。

	模块	版本	输入	輸出	订货号
CPU	CPU SR40 (AC/DC/Relay)	V02.00.00_00.00	10.0	Q0.0	6ES7 288-1SR40-0AA0
SB					
EM 0	EM AM06 (4AL/ 2AQ)		AlW16	AQW16	6ES7 288-3AM06-0AA0
EM 1					
EM 2					
EM 3					
EM 4					
EM 5					

设备选型2

4 设备编程与调试

本次实验主要测试 Smart 200 和 HMI 以及组态软件通讯。

1、Smart 200 与 smart 700 IE

<1>首先对 Smart 200 进行简单的编程,然后通过网线下载到 PLC 中。

这段简单的程序主要用来测试, PLC内M区的布尔量以及V区的整 型数和浮点数映射到触摸屏上的表现 能力,像通讯速度方面(仅仅涉及网 口通讯),变量组态的兼容性等问 题。

下面开始对 smart 700 IE 进行简 单的组态。

<2>HMI 组态连接画面:

and a state

				生姜
名称	▲ 通讯驱动程序 在线	注释		
■ 连接_1	SIMATIC S7 200 Smart 平开	•		
3530 C2301470				
Smart 700 I	E			Station
	- 接口			
	以太网 -			
	HMI设备			PLC 设备
类型	地址			地址
() IP	192, 168, 1, 128			192. 168. 1. 178
0.50	口能在设备上组态推制			打腐活槽 0
	A CONTRACT OF MELLING ADDRESS			8U%
	访问点 S70NLINE			☑ 循环操作

HMI 连接画面

<3>然后是变量的组态画面:

							恋量
名称	连接	数据类型	jejų 🔺	载组计数	采集周期	注释	
M00	连接_1	Bool	M 0.0	1	15 *		
M01	连接_1	Bool	M 0.1	1	15		
M02	连接_1	Bool	M 0.2	1	1s		
V200	连接_1	Real	VD 200	1	1s		
V100	连接_1	Int	VW 100	1	1s		

HM 变量画面

<4>最后是组态控制演示的画面:

HM 控制演示画面

下面这个画面 (HMI 测试画面 1) 就是程序运行的初始画面

ARY

HMI 测试画面 1

对比程序的梯形图,点击 M00 开关,开关会打到开的位置同时显示绿色,此状态下, 点击 M01 空开样式的图标,开关会显示向上闭合,并且变为绿色,结果显示: M02 显示 灯变为红色,同时 VD200 输出域显示 500。如图(HMI 测试画面 2)。

HMI测试画面 2

在上面的测试状态下,点击 M01 空开样式的图标,开关会显示向下断开,并且变为灰色,结果显示: M02 显示灯变为灰色,同时 VD200 输出域仍旧显示 500。如图(HMI 测试 画面 3)。

HMI测试画面3

在上面的测试状态下,对 VD100 的输入域点击输入数据 100,此时 VD200 输出域的 值变为 250。如图(HMI测试画面 3)

	SMART LINE	
# % </td <td>50 main and a second se</td> <td></td>	50 main and a second se	

HMI 测试画面 4

在以上的测试过程中可以发现,西门子在自家生产的 PLC 和 HMI 上的兼容性还是无可挑剔的,其实我们在 HMI 的连接组态和变量组态等等方面,都可以清晰的分辨出我们所针对的 PLC 对象是 300 还是 200 或者是我们现在用的 Smart 200,这种形象的表达,给我

们用户带来了很大的实用性和方便性,以至于我们做工程的选型上,更倾向于同种品牌 之间的搭配。

2、Smart 200 与组态王

这里我们使用的是组态王的试用版本 6.55。

Smart 200 里程序没有变化,完整的下载到 PLC 中。

下面是组态王的一些设置:

补充说明:关于驱动程序

驱动升级:组态王 6.55 的原有 s7-200 的 TCP 驱动版本号 60.1.20.30,完全不支持 S7-200 SMART,这并不是组态王的问题,毕竟 S7-200 SMART 大概是去年才正式推出的,如 果进到组态王的驱动程序下载界面,能看到他们在 2013 年 9 月更新了驱动程序,已经将 程序更新到 60.1.24.30,而且备注里写明是支持 S7-200 SMART 的,或许是我的个人能力 有问题,下载完并安装了新驱动后还是没能和 PLC 进行通讯,后来论坛上终于有高人对 驱动做了改进,如期成功、、、、(以下是论坛的摘抄内容,经本人验证完全适用)

首先将组态王的新版驱动 60.1.24.30 按照组态王安装新驱动的方法安装到系统中。安装完成后,在组态王的安装目录找到路径: C:\Program Files\kingview\DRIVER(我一般安在C盘默认路径下)

找到"kvS7200.ini"文件记事本打开编辑,

如果有多台 PLC 需要连接,就把 PLC 地址罗列如下:

[192.168.1.50:0]

[192.168.1.40:0]

[192.168.1.30:0]

[192.168.1.20:0]

/SMART

LocalTSAP=0200

RemoteTSAP=0200

TpduTSAP=000A

SourceTSAP=0009

【注意】原文档中的数据是无法连通 PLC 的,错在 Remote TSAP=1000。

/SMART

LocalTSAP=1000

RemoteTSAP=1000

TpduTSAP=000A

SourceTSAP=0009

将文件编辑完后保存修改即可。

<1>建立通讯

首先做通讯连接,点击到左侧页面出现时,选择 西门子-----S7—200(TCP),会出现两个TCP可选项, 选择第2个其余步骤按照原有TCP说明即可完成。

通讯画面

<2>建立变量

按照要测试的 PLC 程序,建立相应的点

						_
· 变量名	变量描述	变量类型	ID	连接设备	寄存器	报
100 \$ 毫秒		内存实型	16			
1 5 网络状态		内存整型	17			
1 MO0		I/O 畜散	21	smart01	M0.0	
1 MO1		I/O 裔散	22	smart01	M0.1	
1 MO2		I/O 斋散	23	smart01	M0.2	
100 VD100		I/O实型	24	smart01	V100	
1 VD200		I/O实型	25	smart01	V200	
%2 新建						

变量画面

<3>组态画面

测试画面 1

对比右侧的梯形图分别将刚刚建立的变量连接上图中的对应的图素。对比右侧的梯形图,M0.0 开关打到开的位置-----M0.1 如果按下开结果显示: M0.2=1,显示灯变为绿色,同时 VD200 指针指向 500.

测试画面 2

对比右侧的梯形图, M0.0 开关打到开的位置----M0.1 按下关, 结果显示: M0.2=0,显示灯变为灰色, 同时 VD200 指针指向 500, 当调节 VD100 到 100 时, VD200 指向 250.

测试画面 3

可见 Smart 200 在与组态王连接时离散变量和实型变量是完全没有问题的。由于本测 试只有 1 套 PLC 产品并不能保证,组态王在连接多套 PLC 时,其反应速度和变量的兼容 性还会如此完美。

3、Smart 200 与 FameView

这里我们使用的是 FameView 的试用版本 76093。

Smart 200 里程序没有变化,完整的下载到 PLC 中。

下面是FameView 的一些设置:

<1>建立驱动连接

相对于组态王来说杰控的 FameView 对 Smart 200 的升级还是很到位的,在软件版本 更行的时候,已经囊括了进来。还是简单的选择 S7TCP,这里我们只是用到了 M 区和 V 区,所以指勾取了这两项。

 № 10717TYCZK[W11.01.02] ③ 我的系统 ④ 设置 ④ 顶目 ● 例 授和 ● 例 基本应用 ● 例 设备通讯 ● 例 设备预据库 	[设备通讯] [1]. 安装服动 [2]. 卸载服动 [3]. 启动服动 [4]. 设备数据表	32驱动每	原动专持128共发任名)	
 ② 計應应用 ○ 計 応応用 ○ 方度支剥振 ○ 方見支剥振 ○ 用户方应用 ○ 万度为现表 ○ 不可定为现本 ○ 不可定共同 ○ 図 数 ○ 201 ○	□ 设备通讯服动[124个] □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	E	[以太陸艇助]使用普通网卡,不需SU I - 映象输入 Q - 映象输出 M - 中间标志 II - 前線索輸出 M - 中间标志 II - 対線和 FI - 分设输入 PQ - 外设输入 PQ - 外设输入 FI - 分设输入 PQ - 外设输入 PI - 小砂電 C - 计数器 V - ST2007緒区 II - CFU特拉(DByte) DT - CFU特拉(DByte) SI - CPU状态 并发掘动編号: -	MATIC-NET,访问STU以太阿或PY接口. S2 - 集成PF接口从站状态 S3 - 扩展PF接口从站状态 S4 - 集成PF接口从站动降 S5 - 扩展PF接口从站动降 S6 - 操快状态 S7 - PN/DF从站状态
	更新驱动			安装 关闭

通讯画面

下面是编辑设备驱动表,先建立 M 区的设备表:

	题(D1-2000,支持批量数据及	并行通讯机制,30	/64/128/256点加密	狗限制设备号数	量为10/20/40/80)	
· 设备号 · 名和	\$F	通讯驱动	本地参数	远和	参数	数据类型
D1 Syste	:n					
D2						
D3						
D4						_
D5	合 设备号(D2)					
D6	设备号名称:					
D7	M区的设备表					
D8	STICP	▼]tÿ	(太网驱动)使用普通	网卡,不需SIMATI	C-MET,访问S7以太网或PM接口.	
D9					- [3]. 通讯数据	
D10	CPV机架号*10	00+槽号: 1			数据类型: M - 中间标	志
D11		rv类型: <u>57-200</u>	SMART	-	访问方式: 读写[RT]	-
D12	设备	IP地址: 192.10	8. 0. 123	*	单元格式: 字节[8位]	▼ 无符号整数 ▼
D13	通讯起	調(MS]: 10	00			
D14		[试次数: 3 [1,100]: 1			开始地址: 0	0 [00]
D15	1-1430029	[1-100]. [1] [1] 計考	扫描织刷		₩ <u>₩</u>	
D16		•400	141490001		增强选项: 🛄 无中	申断标志:
D17	[2]. 本地参数				□□ 中国 ▼ 尽悦	加可数据保持: 要恢复通讯:
D18	本机1P地:	1/2]: [defa	ilt]	Ψ.	□ 设备	备号变化计数标志 (B1038);
D19			设置网]‡	□ 报〉	2日志又件(部分驱动); 愛D1相应单元控制[0/1/2/15]

建立M区通讯

再建立V区的设备表

建立V区通讯

<2>建立变量

下面是在运行数据库里建立 V区的模拟变量和 M区的开关变量

[运行数据库] [1] - 定义规模参数 [2] - 变里交叉参考 [3] - 使用Excel组态 0BJ - 变量监控对象				操作方式	实际数量	最大数里
AI - 檀桃沢只读变量 AO - 檀桃沢只读变量 AR - 檀桃沢只等变量 DI - 开关只写变量 DR - 开关误写变量 DR - 开关读写变量 VA - 內部樟椒安量	AR - 模拟读写变量汉向该/写 新建 (全部 • VI200	设备表数值) 修改 夏 制 AR[1]:	删除	过滤 清单		:
VD - 内部开美変量 VT - 文本変量 DOC - 存错功能 CA - 计错功能 CMP - 比技功能 FB - 系统功能 FG - 功能组 TM - 定時功能 FA - 函動功能	☐V9100 V92300	創筑変量/功能 序号 名称 1 ▼0100 2 ▼0200	地址 [D3:25]	描述		

建立变量 1

<3>组态画面

按照右图将相应的变量填入图中的元素里:

运行 PLC,首先看一下 FameView 读写数据的速度,同时也能判断出 PLC 的响应速度,结果显示他们的读写的速度是以 ms 计量的,当然这和连接设备的数量以及网络环境有很大关系,这里由于条件有限不做赘述。

的 s7TC	P驱动程序	S					×
设备号	本机IP	服务器IP	CPU槽号	状态	读计数	写计数	提示
[D2]	[default]	192, 168, 1, 178			371	11	[00] = 0k.
[D3]	[default]	192, 168, 1, 178	1	~	378	16	[00] - 0k.

测试画面2

以下是运行画面

测试画面3

同样,对比右侧的梯形图,M0.0 开关打开-----M0.1 合上开关结果显示: M0.2=1,显示灯 变为鲜红色,同时 VD200 数码管显示 500.

测试画面4

对比右侧的梯形图, M0.0 开关打开-----M0.1 落下开关结果显示: M0.2=0,显示灯变为 暗红色, 同时 VD200 数码管数值还是 500, 当调节 VD100 到 100 时, VD200 显示 250.

在做测试的时候我同时打开了 PC 机上的 PLC 程序,

5 应用体会

以上仅仅是对 PLC 与外部设备的通讯连接做的一些小测试,这里不得不说 smart 200 在硬件上配备了网口,这虽然在界内的 PLC 上不算是一个亮点甚至有点落后的步伐,但 对与取代 200CN 来说却是很值得夸出口的地方,让我不得不想起我又爱又恨的 CP243。

另一方面, smart 200 的编程界面给人一种很明显的进步感,这主要也是针对于 STEP 7-MicroWIN 来说的, smart 200 的编程界面在大局上并没有舍弃原有的配置,只是在排版 布置上更让人觉得它本身就是用在 WIN7 或者 WIN8 上的,这样的设计会让人们有一个 很自然的过度,既没有陌生感还有很大的新意,对于我来说,这点或许又是一个取代 200CN 的砝码。

在缺点方面吗,我记得在做计算机和 smart 200 编程软件通讯时,有时会出现找不到 PLC 的影子,可如果添加了要通讯的 PLC 的地址,又能完整的通讯上,不知道是我哪儿 设置有问题。

还有每次在线测试的时候刚刚下载的新程序,都要有比较弹出框弹出,感觉这不应 该是软件的 BUG 应该是我对软件的研究还不够吧。

然后说道扩展模块的问题,在 smart 200 刚刚出道时,扩展模块的数量也不过 3-4 个,到现在增加到 6 个,其实对于 smart 200 的 CPU 性能来说,个人感觉这还不能发挥它 最大的工作效率。像我们这种小的工程-----处理的点数比较多,而对于 PLC 的功能运算 速度又没有特别高的要求,如果采用了 smart 200 就显得有点别扭了。像以前的 200CN 扩 展 7 个勉强够用,现在选择 smart 200 不得不考虑,扩展第二个 CPU 的问题,不要向我推 荐你们 CPU 间的网络通讯多么多么的简单方便,如果比较另一个厂家一个 CPU 可以带 10 个扩展的编程来说,你们真的真的很麻烦。

最后就是加密问题,当看到 smart 200 的加密时,我仿佛又看到了网络上疯传的破解 加密软件,亦如当年的 S7-200,在我看来这只说明两个问题,首先说明你们的产品已经 在全中国大卖特卖了;其次说明了伟大的中华民族的智慧是无穷的。其实现在很多的公 司,国外的或者国内的早就开始重视知识产权的保护了,别的厂家也有很鲜明的例子, 我记得西门子楼宇的一款软件在 8---9 年前,就已经能够对程序做成一个一次性的封装文 件,只能下载,根本不能上载和阅读。

总之,由于本人知识结构太狭窄,知识层面又很浅显,以上仅代表个人的观点。无 意针对任何团体和个人。

作者简介: 辽宁工程技术大学毕业,电气自动化专业,毕业后一直从事楼宇自控的相关工作。 参考文献: [1] S7-200 SMART 系统手册 V20 201310。

[2]西门子论坛。

[3]S7-200 SMART PLUS V1.1。