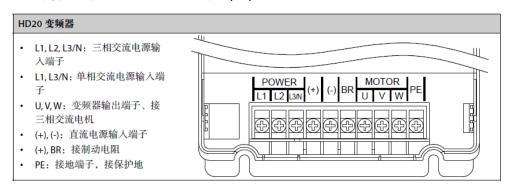
S7-200SMART PLC 与海浦蒙特 HD20 变频器 MODBUS RTU 通讯(案例)

今日和大家解析 S7-200SMART PLC 与海浦蒙特 HD20 变频器 MODBUS RTU 通讯控制变频器启动、停止、正转、反转、写频率以及读取电流和电压。

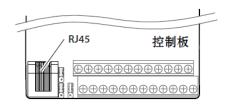
一、 学习目的

本文章是运用 S7-200SMART PLC MODBUS RTU 库指令的应用,通过本文章来让大家对于 MODBUS RTU 库指令通信的理解与应用。

二、设备配置


- 1. 海浦蒙特 HD20 变频器一台
- 2. S7-200SMART PLC ST40 一台
- 3. 485 通讯线一根
- 4. 一台电机

三、控制要求


S7-200SMART PLC 与海浦蒙特 HD20 变频器 MODBUS RTU 通讯控制变频器启动、停止、正转、反转、写频率以及读取电流和电压。

四、接线说明

1.电源接 L1 与 L3N (220V)、电源 L1/L2/L3N (380V)

2.使用 RJ45 网线水晶头来根据如下图所示来接线,对于 PLC 是 3 正 8 负,变频器是 2 正 和 7 负。

类别	名称	端子说明	
RJ45	SCI 通讯端子	通讯口引脚	通讯口信号
		1,3	+5V
		2	485+
		4,5,6	GND
		7	485-
		8	保留

五、设置变频器参数

F00.10 设置为 2 (频率通信给定 2)

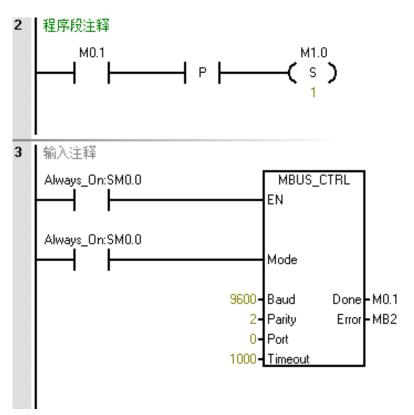
F00.11 设置为 2 (命令通信给定 2)

F17.00 设置为 1 (1个停止位、8个数据位、偶校验、)

F17.01 设置为 3 (波特率 9600)


F17.02 设置为 2 (变频器站地址 2)

参数号	参数名称	设定值	含义
F00.10	频率设定通道选择	2	SCI 通讯设定
F00.11	命令设定通道选择	2	SCI通讯运行命令通道
F03.01	加速时间 1	-	加速时间,根据实际需求调整
F03.02	减速时间 1	-	减速时间,根据实际需求调整
F17.00	数据格式	0(出厂值)	1-8-2 格式,无校验,RTU
F17.01	波特率	3(出厂值)	9600bps
F17.02	本机地址	2(出厂值)	


参数号	参数名称	参数描述	设定范围【出厂值】
F17.00	数据格式		0-6[0]
	0: 1-8-2 格式,无校验,RTU。	4: 1-7-1 格式,信	揭校验,ASCII。
	1: 1-8-1 格式,偶校验,RTU。	5: 1-7-1 格式,看	5校验,ASCII。
	2: 1-8-1 格式,奇校验,RTU。	6: 1-8-1 格式, ラ	C校验,RTU。
	3: 1-7-2 格式,无校验,ASCII。		

六、编写 PLC 程序

第一步: (上电初始化所使用到的 M 地址)

第二步: (使用初始化指令完成位来激活 MSG 指令)

第三步: (设置写入控制命令 MSG 指令)

EN 使能端使用 M1.0 接通

First: 激活端使用 M1.0 加上升沿激活

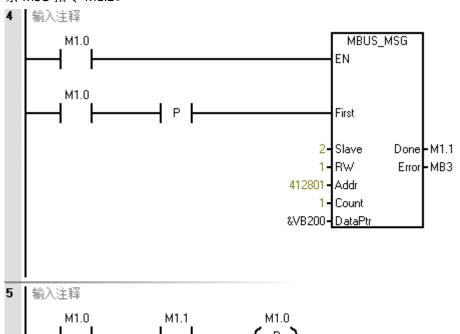
RW: 填写1写入

ADDR: 填写 412801(PLC MODBUS RTU 起始寄存地址 40001 和变频器控制命令字 0x3200,

0x 表示 16 进制换算成十进制 12800 并相加等于 412801)

功能码	中文名称	寄存器信息地址
01	读线圈状态	00001-09999
02	读(开关)输入状态	10001-19999
03	读保持寄存器	40001-49999
04	读输入寄存器	30001-39999
05	写单个线圈	00001-09999
06	写单个保持寄存器	40001-49999
15	写多个线圈	00001-09999
16	写多个保持寄存器	40001-49999

0x3200 控制命令字


Count: 使用地址数,填写1

DataPtr: 存放地址,填写&VB200 即 VW200 开始的地址

Done: 完成位,位地址,填写 M1.1

Error: 错误位,填写 MB3

程序段 5 使用轮询的方式来做,当 M1.0 接通,完成位 M1.1 接通复位 M1.0 并置位下一条 MSG 指令 M1.2。

第四步: (设置写入频率令 MSG 指令)

EN 使能端使用 M1.2 接通

First: 激活端使用 M1.2 加上升沿激活

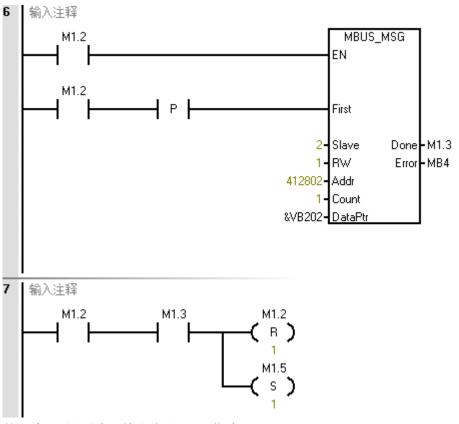
RW: 填写1写入

ADDR: 填写 412802(PLC MODBUS RTU 起始寄存地址 40001 和变频器控制命令字 0x3201,

M1.2 s)

0x 表示 16 进制换算成十进制 12801 并相加等于 412802)

0x3201 运行频率设定


Count: 使用地址数,填写1

DataPtr: 存放地址,填写&VB202 即 VW202 开始的地址

Done: 完成位,位地址,填写 M1.3

Error: 错误位,填写 MB4

程序段 7 使用轮询的方式来做,当 M1.2 接通,完成位 M1.3 接通复位 M1.2 并置位下一条 MSG 指令 M1.5。

第五步: (设置读取输出电压 MSG 指令)

EN 使能端使用 M1.5 接通

First: 激活端使用 M1.5 加上升沿激活

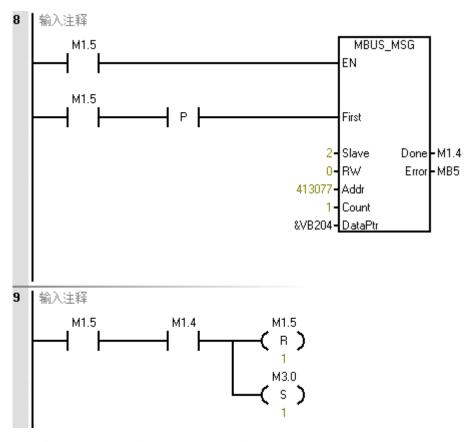
RW: 填写 0 读取

ADDR: 填写 413077(PLC MODBUS RTU 起始寄存地址 40001 和变频器控制命令字 0x3314,

0x 表示 16 进制换算成十进制 13076 并相加等于 413077)

0x3314 输出电压

Count: 使用地址数,填写1


DataPtr: 存放地址,填写&VB204 即 VW204 开始的地址

Done: 完成位,位地址,填写 M1.4

Error: 错误位,填写 MB5

程序段 7 使用轮询的方式来做,当 M1.5 接通,完成位 M1.4 接通复位 M1.5 并置位下一

条 MSG 指令 M13.0。

第六步: (设置读取输出电流 MSG 指令)

EN 使能端使用 M3.0 接通

First: 激活端使用 M3.0 加上升沿激活

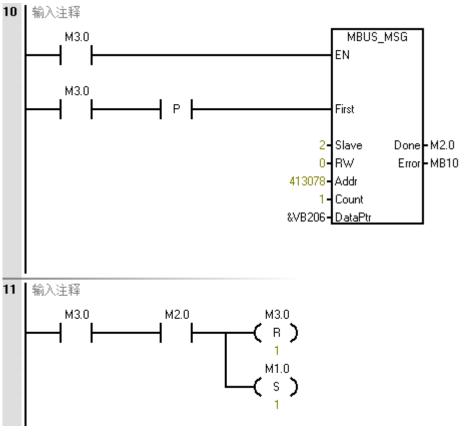
RW: 填写 0 读取

ADDR: 填写 413078(PLC MODBUS RTU 起始寄存地址 40001 和变频器控制命令字 0x3315,

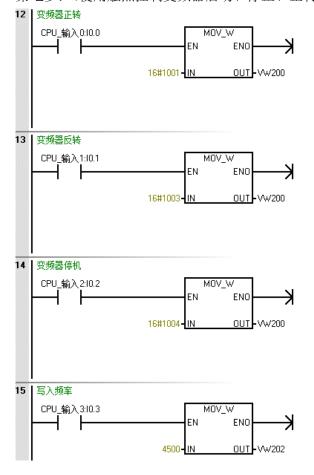
0x 表示 16 进制换算成十进制 13077 并相加等于 413078)

0x3315 输出电流

Count: 使用地址数,填写1


DataPtr: 存放地址,填写&VB206 即 VW206 开始的地址

Done: 完成位,位地址,填写 M2.0


Error: 错误位,填写 MB10

程序段 7 使用轮询的方式来做,当 M3.0 接通,完成位 M2.0 接通复位 M3.0 并置位下一

条 MSG 指令 M1.0。

第七步: (使用触点控制变频器启动、停止、正转、反转、写频率)

温馨提醒:

- 1.由于西门子 200 系列不支持 2 个停止位, 所以在选择变频器通信格式的时候要注意, 否则通信不上去。
- 2.西门子 S7-200SMART PLC 寄存器地址是可以扩展到最大 400001, 所以在 ADDR 引脚填写超过 40001 的地址。

此时此刻 S7-200SMART PLC 与海浦蒙特 HD20 变频器 MODBUS RTU 通讯控制变频器启动、停止、正转、反转、写频率以及读取电流和电压已编写完成,大家都理解并且掌握了吗?可以在上述文章找答案!