PROFINET 通信诊断 Page 1 of 5

PROFINET通信诊断

在进行PROFINET IO 通信IO控制器/智能设备的过程中,有可能会出现错误,对于PROFIENT通信诊断,有如下三种方法:

通过CPU指示灯状态诊断

通过PLC信息诊断

通过特殊存储器诊断

方法一: 通过CPU指示灯状态诊断

如果 S7-200 SMART CPU 作为PROFIENT 控制器和 PROFINET IO设备进行通信。可以查看如下表中LED状态查看CPU所处的状态,进行简单的诊断。见表1.所示。

表1.LED指示灯状态诊断CPU状态

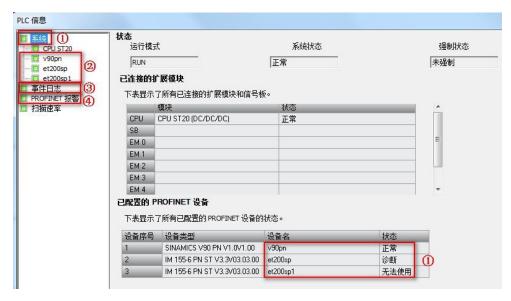
工作状态	LED 指示灯			说明	
	RUN	STOP	ERROR	33-13	
作PROFINET控制器工作时 STOP	灭	开	1 Hz闪烁	CPU 处于 STOP模式且任何已组态的PROFINET设备失去连接或收到警告时适用。	
作 PROFINET控制器工作时 RUN	开	灭	1 Hz闪烁	CPU 处于RUN模式且任何已组态的PROFINET设备失去连接或收到警告时适用	
作智能设备时 RUN	开	灭	1 Hz闪烁	CPU 处于RUN模式且与上位IO控制器未连接或者组态不匹配时适用	

从表1.中可以看出:

当 S7-200 SMART 组态为 PROFINET 控制器后,无论CPU出于停止还是运行,失去连接或者出现警告时,ERROR指示灯会以1Hz闪烁。

当S7-200 SMART 组态为 PROFINET 智能设备后,当与上位IO控制器未连接或者组态不匹配时,ERROR指示灯会以1Hz闪烁。

方法二: 通过PLC信息诊断


S7-200 SMART作为控制器时,通过PLC信息可以查看相关PROFINET通信故障的诊断信息。

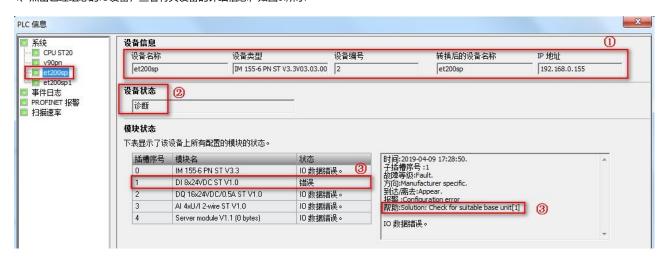
- 1、通信搜索到CPU
- 2、菜单栏选择PLC, 然后在菜单栏功能区选择PLC,如图1.所示

图1.打开PLC信息

3、打开的PLC信息对话框,如图2所示。

图2.PLC信息

①为系统页面系统对话框显示的:已组态的 PROFINET 设备 (Configured PROFINET device): PROFINET 设备的状态


状态如下:

不可用 (Not available): CPU 无法找到设备

正常 (OK)

诊断 (Diagnosis): 报告警告。

- ②为已经组态的IO设备,点击②可以查看具体某个设备的信息
- ③为事件日志
- ④为PROFINET报警
- 4、点击已经组态的IO设备,查看有关设备的详细信息,如图3.所示

图3.PROFINET设备详细信息

①处显示设备信息,包含、设备名称、设备类型、设备编号、转换后的名称以及IP 地址

②显示设备状态:

不可用 (Not avaliable): CPU 无法找到设备,设备名称与实际设备不符

正常 (OK)

诊断 (Diagnosis): 报告警告。

③模块状态

该对话框显示插槽中每个模块的状态。模块状态分类如下:

正常 (OK)

错误 (Error): 如果单击"状态"列中的"错误"按钮,则会在右侧显示相应的详细错误信息。

图3中所示错误为,ET200SP插槽1所使用的底座为白色底座,在组态中没有组态启用新的电位组,所以报错

5、通过事件日志查看CPU存储的事件历史记录,包括上电、掉电、错误以及模式跳转等事件。还列出了事件发生时间。**显示的事件日志的最大数量为32。**如图4.所示

图4.事件日志

6、查看PROFIENT报警,显示 PROFINET相关的警告信息:设备编号、设备名称、插槽编号、子插槽编号以及警告描述。如图5.所示

图5.PROFINET报警

S7-200 SMART 作为智能设备时,可以通过PLC信息查看智能设备的状态,如图6.所示

图6.智能设备诊断

PROFINET 通信诊断 Page 4 of 5

也可以在事件日志中查看,如图7.所示。

图7.事件日志查看诊断

方法三: 通过特殊存储器诊断

从V2.4版本开始, S7-200 SMART 预留特殊存储器SMB1807-SMB1935用于PROFINET通信诊断。

△注意!如果程序使用的范围为 SMB1800 至 SMB1999 且是在 STEP 7-Micro/WIN SMART V2.3或更早版本中创建的,则程序在 V2.4 将被清除,必须重新编辑程序以使用其它读/写 SM地址。

从V2.5版本开始,S7-200 SMART 预留SM1936.0-SM1937.0用于诊断智能设备和上位控制器的通信连接状态和IO数据状态。

具体存储区分配表2.所示

表2.特殊存储器使用分配

SM 地址		设备编号	诊断内容		含义说明
OMD4000 OMD4007	SMB1800	1	诊断站点 状态		
	SMB1801	2			
	SMB1802	3		每字节的数值	00H: 不提供。
	SMB1803	4			80H: 正常。 81H: 诊断。 (设备已断开连接。)
SMB1800-SMB1807	SMB1804	5		对应每个设备的	82H:有错。(设备已连接,但有些模块存在
	SMB1805	6		状态。	620. 有相。(以由己廷汝,但有三侯次行任 报警。)
	SMB1806	7			10 = 0 /
	SMB1807	8			
SMB1808-SMB1871	SM 1808.0-1815.7	1			
	SM 1816.0-1823.7	2			
	SM 1824.0-1831.7	3		每个设备8个字	0为正常; 1为故障
	SM 1832.0-1839.7	4	诊断模块 报警状态	节 (64位)	
	SM 1840.0-1847.7	5		每位对应每个模	
	SM 1848.0-1855.7	6		块的报警状态	
	SM 1856.0-1863.7	7			
	SM 1864.0-1871.7	8			
SMB1872-SMB1935	SM 1872.0-1879.7	1			
	SM 1880.0-1887.7	2			
	SM 1888.0-1895.7	3		每个设备8个字	
	SM 1896.0-1903.7	4	诊断模块	节 (64位)	 0为正常:1为错误
	SM 1904.0-1911.7	5	数据状态	毎位对应毎个模	7万正市,「万相庆
	SM 1912.0-1919.7	6		块的数据状态	
	SM 1920.0-1927.7	7			
	SM 1928.0-1935.7	8			
SMB1936	SMB1936	-	智能设备	毎字节的数值	00H: 未组态。 80H: 正常。
			控制器	对应每个设备的	81H:未连接。 (智能设备未连接控制器。)

			连接状态	状态。	82H: 诊断。 (智能设备与控制器已经连接, 但智能设备的组态与上位控制器不匹配)
			智能设备		
SM1937.0	SM1937.0	-	IO数据状 态	IO数据状态	0为正常; 1为数据错误