如何编写 3 台电机轮换的 PLC 程序?

导读:

有很多读者问我怎么让一个电机工作 8 小时后停止? 三台或者多台电机轮换的一个程序怎么编写。这里小编就以"3 台电机轮换"的一个案例来讲解,本案使用西门子 200smart SR30 型号的 PLC。

一、控制要求

某工厂需要 24 小时工作,有 3 台电机需要轮流工作,当一台电机启动 8 小时以后,更换下一台电机启动,以此轮换。如果运行的电机出现故障以后,切换下一台电机运行并输出对应的报警指示灯。

二、小o表

IO 表						
	输入	输出				
端口	功能	端口	功能			
10.0	电机1启动	Q0.0	电机 1			
10.1	电机 2 启动	Q0.1	电机 2			
10.2	电机 3 启动	Q0.2	电机 3			
10.3	电机1停止	Q0.3	电机1报警			
10.4	电机 2 停止	Q0.4	电机 2 报警			
10.5	电机 3 停止	Q0.5	电机 3 报警			
10.6	电机1过载	Q0.6	运行指示灯			
10.7	电机 2 过载	Q0.7	停止指示灯			
11.0	电机 3 过载	Q1.0	报警指示灯			
11.1	电机1缺相					
11.2	电机 2 缺相					
11.3	电机 3 缺相					
11.4	急停					
I1.5	自动					
11.6	故障复位					

注: 停止、过载、缺相、急停的输入信号接的是常闭。

三、控制程序

1.建立子程序

(1) 变量表

建立变量表(图1),完成的子程序如图2所示。

变量	星表		电机控制 - EN			
	<u>→</u> &					
	地址	符号	变量类型	数据类型	注释	■启动信号
1		EN	IN	BOOL		
2	L0.0	启动信号	IN	BOOL		┃ ┛ 停止信号
3	L0.1	停止信号	IN	BOOL		72.4
4	L0.2	过载	IN	BOOL		
5	L0.3	缺相	IN	BOOL		┛过载
6	L0.4	故障复位	IN	BOOL		
7	L0.5	定时输入	IN	BOOL		- 缺相
8	LW1	时间设定H	IN_OUT	INT		BP (TIA
9	LW3	时间设定M	IN_OUT	INT		
10	LW5	运行时间H	IN_OUT	INT		- 故障复位
11	LW7	运行时间M	IN_OUT	INT		
12	LW9	运行时间S	IN_OUT	INT		 定时输入
13	L11.0	定时完成	IN_OUT	BOOL		AE# 3 THY/
14	L11.1	运行	IN_OUT	BOOL		<mark>????-</mark> 时间设定H
15	L11.2	报警	IN_OUT	BOOL		????- 时间设定M
16			OUT			???? d运行时间H
17	L11.3	启动	TEMP	BOOL		????-┪运行时间M ????-┪运行时间S
18	L11.4	复位时间	TEMP	BOOL		??.? = 定时完成
19			TEMP	BOOL		??.? - 运行
20			TEMP			??.?-报警

(2) 形参子程序

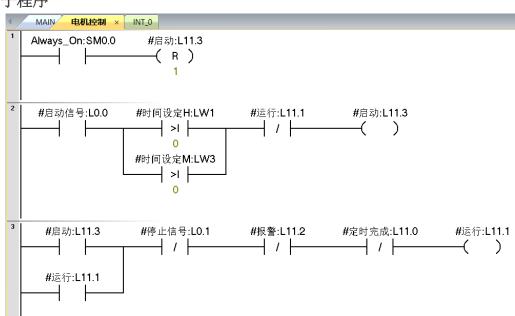
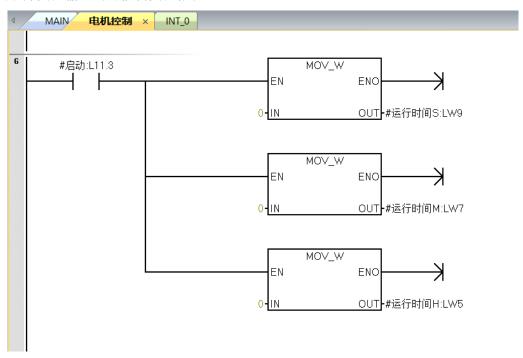
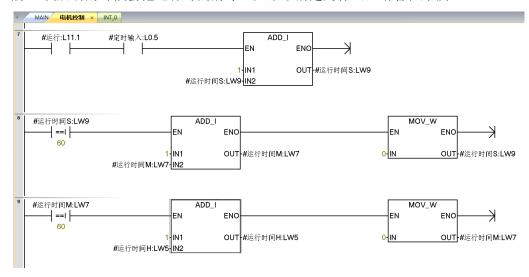


图 2

程序段 1: 每次调用程序的时候先把 L11.3 的状态清除,以免重复调用的时候出现干扰。


程序段 2: 启动的时候需要时间设定的小时或分钟大于 0 才可以启动,如果程序已经在运行了,则无法再触发启动.

程序段 3: 典型的起保停电路, 当停止、报警、定时完成, 触发会断开电路。

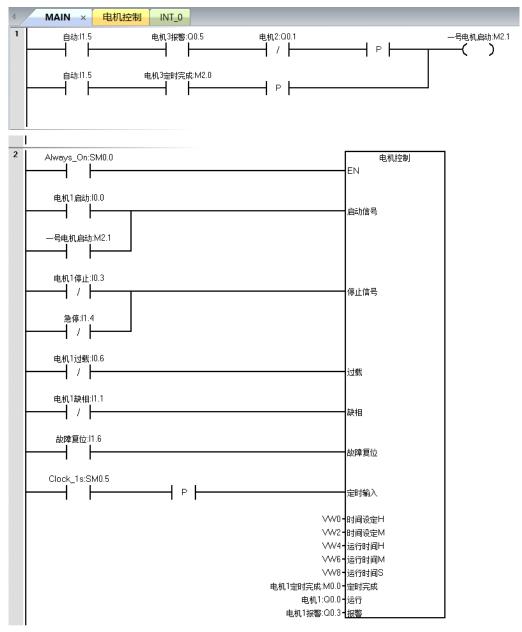

图 1

程序段 4: 当有过载 LO.2 或者缺相 LO.3 时会触发报警输出 L11.2, 复位的时候会暂时断开输出,如果故障没有解除,即使复位也没办法把报警消除。

程序段 5: 当故障复位输入的时候会复位报警。

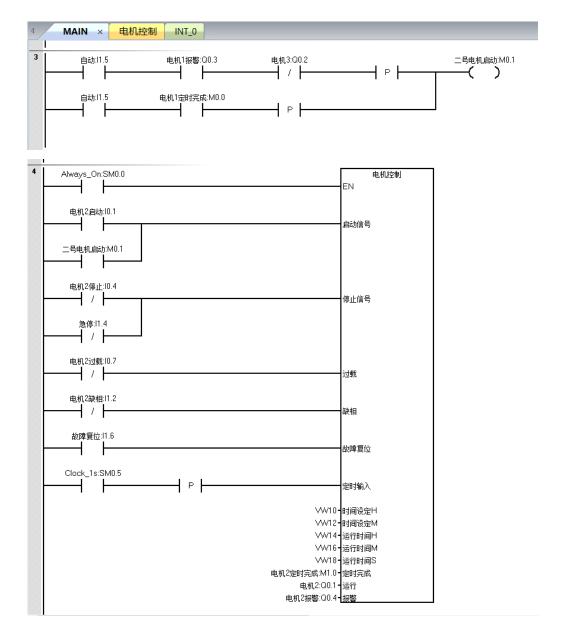
程序段 6: 当第一次启动的时候会把运行时间清零,如果不清楚为什么,请看程序段 2。

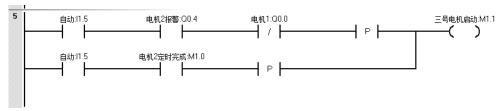
程序段 7: 当运行的时候,外部定时信号输入时,运行时间 S 会加一。


程序段 8: 当运行时间 S=60 时,运行时间 M 加一,然后把运行时间 S 清零。

程序段 9: 当运行时间 M=60 时,运行时间 H加一,然后把运行时间 M清零。

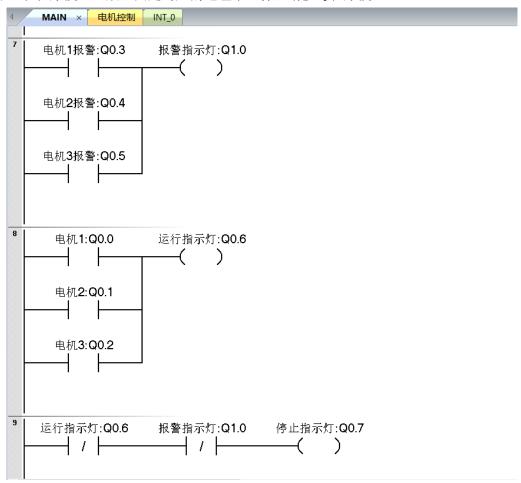
程序段 10: 运行的时候,运行的时间和设定的时间相等时,会输出定时完成信号,并断开程序段 3 的运行。


2. 控制程序。


程序段 1: 在自动的模式下,当电机 3 定时完成或报警的时候才会切换到一号电机启动,如果说电机启动 2 正在运行,第 3 台电机故障了也不会切换到第一台电机启动。

程序段 2: 启动 IO.O 或一号电机启动都可以对电机进行启动,对运行位输出。停止、急停、过载、缺相,由于外部用的是常闭开关,没有触发的情况下,对应的通道会为 1,所以这李使用了常闭触点。

当停止或则急停触发时会使电机停止,当过载或缺相触发时,使电机停止,并输出报警。VW0、VW2是对电机运行的时间设定,VW4、VW6、VW8是电机的运行时间。


程序段 3: 原理和程序段 1 一致,只是对应的地址不一样,请参考程序段 1。程序段 4: 原理和程序段 2 一致,只是对应的地址不一样,请参考程序段 2。

程序段 5: 原理和程序段 1一致,只是对应的地址不一样,请参考程序段 1。

```
Always_On:SM0.0
                                                                       电机控制
  电机3启动:10.2
                                                                 启动信号
三号电机启动:M1.1
  电机3停止:10.5
  \dashv / \vdash
                                                                停止信号
   急停:11.4
   ┨╷┠
 电机3过载:11.0
  \dashv \prime \vdash
                                                                过载
  电机3缺相:I1.3
  \dashv / \vdash
                                                                缺相
  故障复位:l1.6
                                                                故障复位
Clock_1s:SM0.5
                          ┫╒
                                                                定时输入
                                                          VW20 时间设定H
VW22 时间设定M
                                                          VW24- 运行时间H
                                                          VW26 - 运行时间M
VW28 - 运行时间S
                                                电机3定时完成:M2.0 € 定时完成
                                                      电机3:Q0.2 运行
                                                   电机3报警:Q0.5 - 报警
```

程序段 6: 原理和程序段 2一致,只是对应的地址不一样,请参考程序段 2。

程序段 7: 当电机 1 或者电机 2、电机 3 报警的时候会输出报警指示灯。程序段 8: 当电机 1 或者电机 2、电机 3 运行的时候会输出运行指示灯。程序段 9: 如果报警指示灯和报警指示灯没亮的时候输出停止指示灯。

3. 数据块

对每台时间进行初始化设定,如果需要可修改的时间,可以在触摸上建立组态程序,关联对应的变量。

总结:

以上就是整个项目的 PLC 程序,如果需要其他功能可以对程序修改,本案例是小编针对控制要求编写的程序,在手动情况下可单独对一台电机进行控制,在自动模式下为了确保电机正常轮换,请不要启动多台电机,如果说有一台电机出现故障,轮换的时候会跳过有故障的电机。

注:以上程序只供学习参考,如果说要用于实际生产中,需要根据项目和现场控制进行修改。