

CTH200 Series PLC

User Manual

Edition: V1.10 Release date: 06/2019 Shenzhen Co-trust Technology Co.,Ltd

Copyright

Copyright ©2019

Shenzhen Co-trust Technology Co., Ltd. All rights reserved.

You are not authorized to duplicate, excerpt the document in whole or in part or transfer it in any form or by any means without prior written authority from COTRUST. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

Trademarks

a, TrustPLC, CoPanel, COTRUST are registered trademarks of COTRUST.

Some of other designations used in this document are also registered trademarks; the owner's rights may be violated if they are used by third parties for their own purposes.

Disclaimer of Liability

We have checked the contents of this manual for agreement with the hardware and software described. Since deviations cannot be precluded entirely, we cannot guarantee full agreement. However, the data in this manual are reviewed regularly and any necessary corrections included in subsequent editions. Suggestions for improvement are welcomed.

Safety Guidelines

Only qualified person are allowed to install, operate and maintenance on CTH200 Series PLC. Qualified persons are defined as persons who are authorized to commission, ground, tag circuits, equipment, and systems in accordance with established safety practices and standards.

COTRUST has no responsibility for any consequence caused by using this product.

This manual contains notices that you should observe to ensure your personal safety, as well as to protect the product and connected equipment. These notices are highlighted in the manual by a warning triangle and are marked as follows according to the level of danger:

Warning

"Warning" sign indicates operation not as required may result in severe personal injuries or even death.

Caution

"Caution" sign indicates operation not as required may result in personal injuries or device damage

Notice

"Notice" sign indicates necessary supplements or explanations

Precautions for Use

There must be safety circuit to ensure the operation security of PLC system when the external power off or PLC failed. Notices in design for use including:

Emergency brake circuit, safety circuit, positive/reverse operation interlock circuit and the upper/lower limit interlock switch of position for preventing device damage must be implemented in the PLC external circuit.

To ensure the device operation security, the external guard circuit and safety mechanism for the output signal of major accident is a must.

The PLC can detect system exceptions which resulting all output turned off, to ensure the device operation normal, external control circuits need to be added.

When the Relay or Resistor Unit in PLC was damaged, the ON/OFF for PLC Outputs cannot be controlled.

The Power system should fitted with lightning protection device, to prevent the PLC interfaces, like power/signal inputs and controller outputs from being damaged by lightning over-voltage.

Precautions for Installation

Do not install PLC at places with: dust, smut, conductive dust, corrosive gas, combustible gas, vibration and shock. Do not expose the PLC in environment like high temperature, moisture condensation and raining. Thunder strike, fire or disoperation can also cause product damage.

Prevent the metal filing and cable outlet falling into the PLC ventilation hole when wiring and tightening the screws, for it may cause fire, failure and misoperation.

After installing PLC, there must be no sundries in case of fire, fault and misoperation caused by bad heat dissipation.

Hot plugging is not allowed, shield cable must be used to increase immunity of inference.

In situations with serious interference, shielded twisted pair is recommended to improve the anti-interference ability of the system.

Precautions for Wiring

Before Installation and wiring, all external powers must be cut-off, otherwise there maybe electric shock and device damage.

Cover the terminal plate before powering on, follow the instructions in this manual to connect power.

PLC in/out signals wires cannot be parallel with other high voltage or interference lines, they should be layout in separate slots.

Separate the PG terminal on CPU with that of high voltage.

Operation and Maintenance

Do not touch the terminals with power on, in case of electric shock and device damage.

Clean and tighten screws, connect and dismantle cables or expansion modules after power off, or it may cause electric shock and device damage

Do not dismantle the controller in case of damaging the internal parts.

Please reading this manual before modifying, testing, startup and stop programming.

Product Discard

The combustion of electrolytic capacitor on PCB can cause explosion, the main material on PLC is plastic which would generate toxic gas when burnt.

Please follow the local environment regulations to dispose the abandoned products.

Preface

Thank you for choosing CTH200 PLC. Please reading this document carefully before using, so that you could use it more securely and utilizing the abundant functions.

This manual concludes hardware specifications, features and installation of CTH200 PLC and its expansion modules, besides, you can also refer to the instructions set and order number.

Contents abstract:

- Chapter 1 describes the characteristics of CTH200 series PLC;
- Chapter 2 show you how to use CTH200 PLC;
- Chapter 3 introduces the installation methods and dimensions of CTH200 series PLC;
- Chapter 4 introduces the specifications of CTH200 series PLC;
- Chapter 5 describes the networks and communication protocols of CTH200 series PLC;
- Chapter 6 illustrates the main features of CTH200 series PLC by some examples;
- Chapter 7 describes the Power budget calculation of CTH200 system;
- Chapter 8 provides the fault diagnosis for system Runtime;

□ Appendix provides application examples of multiple expansion modules and specified libraries, and all the products order number.

Applicable Objects

All information about TrustPLC CTH200 PLC installing and debugging are oriented for Engineers, Installation technician, maintainer and automation qualified electrician.

Online Help

For related product materials and technical support, please visit: http://www.co-trust.com

Reversion History

Date	Version	Reversion description			
		Delete original chapter 5.1 and 5.2.			
June 2019		• Add chapter 5.5, 5.6 and 5.7.			
		• Add chapter 4.7.4. attach the order info of the PN module			
	V1.10 and components in appendix Q	and components in appendix Q			
		• Add appendix N, add appendix O to replace original			
		chapter 3.4			
		Delete SDO instruction			

Catalogue

Cop	yright			II
Saf	ety Gu	idelines		. 111
	Preca	utions fo	r Use	. 111
	Preca	utions fo	r Installation	. IV
	Precautions for Wiring			
	Opera	tion and	Maintenance	. IV
	Produ	ct Discar	rd	. IV
Pre	face			V
Rev	ersion	History	/	. VI
1	Produ	ict Over	view	1
	1.1	CPU Int	troduction	1
	1.2	Expansi	ion Modules	3
	1.3	Maximu	Im System Configuration	6
	1.4	Network	< Architecture	6
	1.6	Standar	ds and Specifications	7
2	Gettir	ng Starte	ed	9
	2.1	Connec	ting to CTH200 PLC	9
	2.2	Commu	inicate with CTH200	10
		2.2.1	Serial Port Communication Mode	.11
		2.2.2	Ethernet Communication Mode	12
		2.2.3	Modify IP Address in System Block	14
	2.3	Create I	Program Network	14
		2.3.1	Editing	15
		2.3.2	Compiling	16
		2.3.3	Downloading	17
		2.3.4	Running	18
3	Instal	lation		19
	3.1	Importa	nt Notices	19
	3.2	Installat	ion Dimension	21
	3.3	Installat	ion Method	22
	3.4	Ground	ing and Wiring	23
	3.5	Suppres	ssion Circuit	24
4	Techr	nical Spe	ecifications	26
	4.1	General	I Specifications	26
	4.2	CPU		26
		4.2.1	CPU Specifications	26
		4.2.2	Diagrams of CPU Structure and Wiring	36
		4.2.3	Definition of Communication Port	41
		4.2.4	DIP switch	42
		4.2.5	Making Standard Net Cable	42
	4.3	Digital E	Expansion Modules Specifications	43
		4.3.1	Digital Input Modules Specifications	43

		4.3.2	Digital Output Modules Specifications	45
		4.3.3	Digital Input/Output Module Specifications	48
	4.4	Analog	Expansion Modules Specification	52
		4.4.1	Analog Input Module Specification	53
		4.4.2	Analog Output Module Specification	61
		4.4.3	Analog I/O Modules Specifications	63
	4.5	Therm	ocouple and RTD Expansion Module Specifications	67
		4.5.1	RTD Module Specifications	68
		4.5.2	Thermocouple Module Specifications	73
		4.5.3	Hybrid Temperature Module Specifications	78
	4.6	PID Mo	odule Specifications	84
	4.7	Comm	unication Module Specifications	95
		4.7.1	SM277A DP Slave Interface Module Specifications	95
		4.7.2	SM277B DP Slave Module Specifications	98
		4.7.3	SM277C CANopen Slave Module Specifications	. 100
		4.7.4	SM277-PN Slave Module Specifications	. 103
	4.8	Weighi	ng Module Specifications	. 104
	4.9	Motion	Control Module Specifications	. 106
	4.10	BD Ex	pansion Board Specifications and Installation	. 108
		4.10.1	Analog Expansion Board Specifications	. 109
		4.10.2	CAN Expansion Board Specifications	111
		4.10.3	Circuit Guidance Expansion Board Specifications	112
		4.10.4	Installation of BD Board	116
5	Com	municat	tion Protocol and Networking Mode	117
5	Com i 5.1	municat PPI Co	tion Protocol and Networking Mode	117 117
5	Com 5.1 5.2	municat PPI Co MPI Co	tion Protocol and Networking Mode ommunication	117 117 118
5	Com 5.1 5.2 5.3	municat PPI Co MPI Co Freepo	tion Protocol and Networking Mode ommunication ommunication ort Communication	117 117 118 119
5	Com 5.1 5.2 5.3 5.4	municat PPI Co MPI Co Freepo CANop	tion Protocol and Networking Mode ommunication ommunication ort Communication	117 117 118 119 119
5	Com 5.1 5.2 5.3 5.4 5.5	municat PPI Co MPI Co Freepo CANop Ethern	tion Protocol and Networking Mode	117 117 118 119 119 120
5	Com 5.1 5.2 5.3 5.4 5.5 5.6	municat PPI Co MPI Co Freepo CANop Ethern Profibu	tion Protocol and Networking Mode	117 117 118 119 119 120 120
5	Com 5.1 5.2 5.3 5.4 5.5 5.6 5.7	municat PPI Co MPI Co Freepo CANop Ethern Profibu PROFI	tion Protocol and Networking Mode	117 117 118 119 119 119 120 120 121
5	Com 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Appli	municat PPI Co MPI Co Freepo CANop Ethern Profibu PROFI	tion Protocol and Networking Mode	117 117 118 119 119 . 120 . 120 . 121 . 121 . 123
5	Com 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Appli 6.1	municat PPI Co MPI Co Freepo CANop Ethern Profibu PROFI ications CANop	tion Protocol and Networking Mode	117 117 118 119 119 . 120 . 120 . 121 . 123 . 123
5	Comi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Appli 6.1	municat PPI Co MPI Co Freepo CANop Ethern Profibu PROFI ications CANop 6.1.1	tion Protocol and Networking Mode	117 117 118 119 119 120 . 120 . 121 . 123 . 123 . 123
6	Comi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Appli 6.1	municat PPI Co MPI Co Freepo CANop Ethern Profibu PROFI ications CANop 6.1.1 6.1.2	tion Protocol and Networking Mode	117 117 118 119 119 119 120 120 120 121 123 123 123 123
6	Comi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Appli 6.1	municat PPI Co MPI Co Freepo CANop Ethern Profibu PROFI ications CANop 6.1.1 6.1.2 6.1.3	tion Protocol and Networking Mode	117 117 118 119 119 119 120 120 120 121 123 123 123 123 123
6	Comi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Appli 6.1	municat PPI Co MPI Co Freepo CANop Ethern Profibu PROFI ications CANop 6.1.1 6.1.2 6.1.3 6.1.4	tion Protocol and Networking Mode	117 117 118 119 119 119 120 120 120 121 123 123 123 123 123 123 123 123 123 123 123
6	Comi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Appli 6.1	municat PPI Co MPI Co Freepo CANop Ethern Profibu PROFI ications 6.1.1 6.1.2 6.1.3 6.1.4 Modbu	tion Protocol and Networking Mode	117 117 118 119 119 119 120 120 120 121 123 123 123 123 123 123 123 123 124 133
6	Comi 5.1 5.2 5.3 5.4 5.5 5.7 Appli 6.1	municat PPI Co MPI Co Freepo CANop Ethern Profibu PROFI ications CANop 6.1.1 6.1.2 6.1.3 6.1.4 Modbu 6.2.1	tion Protocol and Networking Mode	117 117 118 119 119 119 120 120 120 121 123 124 123 124 123 124 124 123 124 123 124 124 124 124
6	Comi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Appli 6.1	municat PPI Co MPI Co Freepo CANop Ethern Profibu PROFI ications 6.1.1 6.1.2 6.1.3 6.1.4 Modbu 6.2.1 6.2.2	tion Protocol and Networking Mode	117 117 118 119 119 119 120 120 120 121 123 123 123 123 123 123 123 123 124 135 135
6	Comi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Appli 6.1	municat PPI Co MPI Co Freepo CANop Ethern Profibu PROFI ications CANop 6.1.1 6.1.2 6.1.3 6.1.4 Modbu 6.2.1 6.2.2 6.2.3	tion Protocol and Networking Mode	117 117 118 119 119 119 120 120 120 121 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 124 135 135 136
6	Comi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Appli 6.1	municat PPI Co MPI Co Freepo CANop Ethern Profibu PROFI ications CANop 6.1.1 6.1.2 6.1.3 6.1.4 Modbu 6.2.1 6.2.2 6.2.3 6.2.4	tion Protocol and Networking Mode	117 118 119 119 119 119 119 120 120 120 120 121 123 124 135 135 135 136 135 135 135
6	Comi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Appli 6.1 6.2	municat PPI Co MPI Co Freepo CANop Ethern Profibu PROFI ications CANop 6.1.1 6.1.2 6.1.3 6.1.4 Modbu 6.2.1 6.2.2 6.2.3 6.2.4 UDP_F	tion Protocol and Networking Mode	117 117 118 119 119 119 120 120 120 120 121 123 123 123 123 123 135 135 136 138 138
6	Comi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Appli 6.1 6.2	municat PPI Co MPI Co Freepo CANop Ethern Profibu PROFI ications CANop 6.1.1 6.1.2 6.1.3 6.1.4 Modbu 6.2.1 6.2.2 6.2.3 6.2.4 UDP_F 6.3.1	tion Protocol and Networking Mode	117 118 119 119 119 119 119 120 120 120 120 121 123 124 135 135 136 138 135 138 138 138 138 138 138 138 138 138 138 138 138 138 139
6	Comi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Appli 6.1 6.2	municat PPI Co MPI Co Freepo CANop Ethern Profibu PROFI ications CANop 6.1.1 6.1.2 6.1.3 6.1.4 Modbu 6.2.1 6.2.2 6.2.3 6.2.4 UDP_F 6.3.1 6.3.2	tion Protocol and Networking Mode	117 117 118 119 119 119 120 120 120 121 123 123 123 123 123 123 123 135 135 136 138 138 139 139 139

		6.3.4 UDP_PPI Slave Address Mapping		143
	6.4	Analog	I/O Expansion Board	143
		6.4.1	Installation Notes	143
		6.4.2	Expansion Board Access Address	143
	6.5	Recipe	and Data Log	145
		6.5.1	Recipe	145
		6.5.2	Data Log	153
7	Pov	ver Budg	et	161
	7.1	Power	Requirements	161
	7.2	5VDC	Power	162
	7.3	24VDC	Power	163
	7.4	Power	Calculation Example	164
8	Fau	It Diagno	sis	165
	8.1	Diagno	se by MagicWorks PLC	165
	8.2	Diagno	se by CTH200 CPU Modules	168
Арј	pendi	ix		169
	А	Using C1	F-MODBUS Master and Slave Libraries	169
		A.1	CT_MODBUS library	169
		A.2	Installation Instruction	169
		A.3	CT_MODBUS Library Function Explanation	171
	В	Using C1	TH200 CPU Expansion Program Space	177
		B.1	Function Introduction	177
		B.2	Instruction	177
	С	Using C1	TH200 PLC Expand 100K Data Block Library	179
		C.1	Function Introduction	179
		C.2	Instruction	179
		C.3	Ext_mem library Function Explanation	180
		C.4	Application Example	181
	D	Using PI	D Control Library of CTH200 PLC	182
		D.1	Using CPU Embedded PID_T Library	182
		D.2	Using CTH200 PLC Thermocouple PID Control Module Library	186
	Е	Using Mo	otion Control Library "motion_ctrl_lib"	192
		E.1	Introduction	192
		E.2	Installation Instruction	192
		E.3	Instructions Explanation	193
		E.4	Homing Mode Illustration	231
		E.5	Examples	239
	F	Using SN	1231 Weighing Module and the Library	244
		F.1	Weighing Library Function Illustration	244
		F.2	Weighing Library Mode Explanation	250
	G	SM277A	Module	254
	Н	SM277B	Module	258
		H.1	PROFIBUS-DP Network Structure	258
		H.2	Components of SM277B	259
		H.3	Operating Guide	259
	I	Permane	ent V Memory Library "CT_savevmem"	272

J	SM253 N	Notion Control Library	274
	J.1	Introduction	274
	J.2 Installation Instruction		
	J.3	sm253_motion_ctrl_lib Instruction List	275
	J.4	sm253_motion_ctrl_lib Library Instruction Explanation	276
	J.5	Debugging Example	300
Κ	Instructio	ns of ETHERNET_SET	305
	K.1	Instruction	305
	K.2	Instruction Explanation	305
	K.3	Example	307
L	Instruction Set		309
М	Programming Cable		315
Ν	How to Use Programming Card		316
0	Battery Card and Memory Card		320
Ρ	Special Function Register		
Q	Product Oder Info		

1 **Product Overview**

CTH200 series PLC is a kind of automatic controller product introduced by COTRUST, which aiming at the rapidly developing OEM market in China. Fuled by the abundant experience of COTRUST engineers and the quick response to marketing demand of industry 4.0, it owns traits from rich-model to Ethernet to excellent performance. CTH200 series PLC will not just offering OEM clients with cost-effective solution of micro automation, but speed the development process of industry 4.0 in China.

CTH200 is a general terms for all CPU products(nine types in all), including CPU H224, CPU H226L, CPU H224X, CPU H226XL and CPU H228XL(the CPU H228XL is just relay-output while others support both relay and transistor). Supporting for variety of modules, such as digital I/O modules, analog I/O modules, temperature sampling modules and so on gives you flexible choice in front of industrial automation problem.

CTH200 PLC communicates with computer via Ethernet port or RS485 port, and programs on MagicWorks PLC (version V2.08 or above) or MicroWin(not suit for Ethernet port).

CTH200 system can be made up by one single CPU as well as one CPU with up to 7 various optional expansion modules.

1.1 CPU Introduction

CTH200 PLC is small robust programmable controller which encapsulating not only micro-processor but also multiple digital I/O points, which can expand up to 7 modules via communication bus.

Figure 1-1 CTH200 PLC structure diagram

Table 1-1 CTH200 CPU

Specifications	Order number
CPU	
CPU H224 12KB program/8KB data, 24VDC power supply,	
14DI/10DO transistor-source outputs, 0.5A, 1 PPI port, 1 freeport, 1	CTH2 214-1AD33-0X24
Ethernet port,3x50KHz motion outputs	
CPU H224 12KB program/8KB data, 220VAC power supply,	
14DI/10DO relay outputs, 2A, 1 PPI port, 1 freeport, 1 Ethernet port	CTH2 214-TDD33-0A24
CPU H226L 12KB program/8KB data,24VDC power supply,	
24DI/16DO transistor-source outputs, 0.5A, 2 PPI/freeports,1	CTH2 216-2AD33-0X40
Ethernet port, 3x50KHz motion outputs	
CPU H226L 12KB program/8KB data, 220VAC supply, 24DI/16DO	
relay outputs, 2A, 2 PPI/freeports,1 Ethernet port	CTH2 216-2BD33-0X40
CPU H224X 16KB program/108KB data, 24VDC supply, 14DI/10DO	
transistor-source outputs, 0.5A, 1 PPI port, 1 freeport, 1 Ethernet	CTH2 214-1AX33-0X24
port, 2x50KHz outputs (Pulse/Dir or PTO/PWM)	
CPU H224X 16KB program/108KB data, 220VAC supply,	
14DI/10DO relay outputs, 2A, 1 PPI port, 1 freeport, 1 Ethernet port	CTH2 214-1BX33-0X24
CPU H226XL 72KB program/110KB data, 24VDC supply,	
24DI/16DO transistor-source outputs, 0.5A, 2 PPI/freeports,1	CTH2 216-2AX33-0X40
Ethernet port, 2x50KHz outputs (Pulse/Dir or PTO/PWM)	
CPU H226XL 72KB program/110KB data, 220VAC supply,	
24DI/16DO relay outputs, 2A, 2 PPI/freeports, 1 Ethernet port	CTH2 216-2BX33-0X40
CPU H228XL 96KB program/110KB data, 220VAC supply,	
36DI/24DO relay outputs, 2A, 2 PPI/freeports, 1 Ethernet port	CITZ 218-38X33-0X60

CPU features:

Reliability and Stability

- Resist ESD/EFT, tested by strict industrial environment, CE certified
- Three proofings processed, suited for various harsh industrial environment
- User program and data can be kept permanently
- Multiple password protection, one-way downloading for kernel program, permanent confidential
- Anti-thunder for COM ports, with high reliability
- With build-in real-time clock

Robust communication capability

- Integrate 2 or 3 COM ports
- Support MPI, PPI, DP, Freeport, ModBus and Ethernet communication protocols
- Exchanging 200Bytes per read-write operation, enhanced networking communication

High intelligence

- Integrated parameter self-tuning fuzzy logic algorithm and temperature control PID library, with high accuracy and dynamic performance
- Build-in plenty of integrated functions with simplified programming and flexible control
- High-speed closed loop can be delivered to support some high-speed system application
- Abundant motion control functions, suitable for some synchronization and positioning applications

High speed and high-capacity

- Logical operation speed: 0.22µs for H224 and H226L; 0.15µs for H224X/H226XL/H228XL
- Floating-point calculation speed: 12µs for H224/H226L; 8µs for H224X/H226XL/H228XL
- Large program capacity: 12K-72Kbyte
- Large data space: 8K-110Kbyte
- High-speed Input counter: 4 for H224 and H226L; 6 for H224X/H226XL/H228XL
- High speed pulse output: 3 for H224 and H226L; 2 for H224X/H226XL/H228XL

Ultra system expandation

- Analog I/O: 32AI/32AQ for H224/H226L; 194AI/194AQ for H224X/H226XL/H228XL
- Digital I/O: 128DI/128DQ for H224/H226L; 640DI/640DQ for H224X/H226XL/H228XL
- Expansion I/O modules up to 7

1.2 Expansion Modules

CTH200 CPU offers local I/Os, you can also use expansion modules for more additional I/Os and communication functions. The various expansion modules include digital I/O modules, analog I/O modules, temperature collection modules and DP communication modules etc. These modules consist of different I/O number, used for configuring various scale of I/Os with high cost performance. All modules are installed with standard DIN35 rail.

Specifications	Order number
SM221 digital input module, 8 inputs, 24VDC	CTH2 221-1BF32
SM221 digital input module, 16 inputs, 24VDC	CTH2 221-1BH32
SM221 digital input module, 32 inputs, 24VDC	CTH2 221-1BL32
SM222 digital output module, 8 transistor outputs, 24VDC, 0.5A(with	CTH2 222-1BF32
Output Protection)	
SM222 digital output module, 16 transistor outputs, 24VDC, 0.5A(with	CTH2 222-1BH32
Output Protection)	
SM222 digital output module, 32 transistor outputs, 24VDC, 0.5A(with	
Output Protection)	
SM222 digital output module, 8 relay outputs, 2A	CTH2 222-1HF32
SM222 digital output module, 16 relay outputs, 2A	CTH2 222-1HH32
SM223 digital input/output module, 4*24VDC inputs, 4 transistor outputs,	CTH2 223-1BF32

Table 1-2 Specifications of expansion modules

24VDC, 0.5A(with Output Protection)	
SM223 digital Input/Output module, 8*24VDC inputs, 8 transistor outputs,	
24VDC, 0.5A (with Output Protection)	CIN2 223-IDN32
SM223 digital Input/Output module, 16*24VDC inputs, 16 transistor	CTH2 223-1BL32
outputs, 24VDC, 0.5A (with Output Protection)	
SM223 digital input/output module, 4*24VDC inputs, 4 relay outputs,2A	CTH2 223-1HF32
SM223 digital input/output module, 8*24VDC inputs, 8 relay outputs, 2A	CTH2 223-1PH32
SM223 digital input/output module, 16*24VDC inputs, 16 relay outputs, 2A	CTH2 223-1PL32
SM231 Analog Input module with 4 inputs, 0~20 mA current input or \pm	
5V, ± 2.5 V, 0~10V, 0~5V voltage input, isolated 12 bit resolution	CTH2 231-0HC32
SM231 high precision analog input modules, 8 inputs, voltage input, and	
opto-isolator 16 bits precision.	CTH2 231-0HF32
SM231 high precision analog input modules, 8 inputs, current input,	CTH2 231-1HE32
opto-isolator 16 bits precision.	01112 201 1111 02
SM231 analog voltage input module with 8 inputs, ± 2.5 V, 0~10V, 0~5V	CTH2 231-5HE32
voltage input or optional 0~20 mA current input, isolated 12 bits resolution	01112 201 0111 02
SM231 thermal resistance temperature Input module, 2 RTDs, isolated 16	CTH2 231-7PB32
bits resolution	01112 201 71 002
SM231 thermal resistance temperature Input module, 4 RTDs, isolated 16	CTH2 231-7PC32
bits resolution	•••••••••
SM231 thermal resistance temperature Input module, 4xTC, J/K/R/S/T/E/N, isolated 16 bits precision	CTH2 231-7PD32
SM231 thermal resistance temperature input module 8xTC	
J/K/R/S/T/E/N, isolated 16 bits precision	CTH2 231-7PF32
SM231 thermocouple PID module, 4 J/K, with intelligent PID, isolated 16	
bits precision	CTH2 231-71D32
SM231 thermocouple PID module, 8 J/K, with intelligent PID, isolated 16	CTH2 231-7TF32
SM231 8 current inputs, 0~20mA/4~20mA, with intelligent PID, isolated 16 bits precision	CTH2 231-7HF32
SM231 hybrid temperature Input module, 2 NTC or PT100, 2 0~20mA	
current or ±5V, ±10V, 0~10V, 0~5V voltage input, isolated 16 bit precision	CTH2 231-7ND32
SM231 thermal resistance temperature Input module, 8NTC/PT100,	CTH2 231-7NE32
isolated 16 bits precision	01112 201 7111 02
SM231 weighing module, 1 sensor input, 50Hz sample frequency, 0.01%	
accuracy, 6VDCx150MA excitation power output, isolated 16 bits	CTH2 231-7WA32
precision	
SM232 Analog Output Module, dual ±10V supply or 0~20mA current	CTH2 232-0HB32
outputs, isolated 12 bits voltage or 11 bits current precision	
SM232 Analog Output Module, quad $\pm 10V$ supply or 0~20mA current	CTH2 232-0HD32
outputs, isolated 12 bits voltage or 11 bits current precision	
SM235 analog Input/Output Module, 4 voltage/current inputs, 1 voltage/current output, isolated 12 bits voltage or 11 bits current precision	CTH2 235-0KD32
SM253 motion control module, 2 uniphase or AB phase HSC input,	CTH2 253-1BH32

200KHz, 2xPTO/PWM outputs, 200KHz, COTRUST motion control	
libraries	
SM277A Profibus DP Slave Interface Module, 12M traffic rate,	
photoelectric isolated	CTHZ ZTT-UAA3Z
SM277B Profibus DP Slave module, 1.5Mbps traffic rate, photoelectric	
isolated	CTH2 277-0AD32
SM277C CAN Slave module, 8DI/6DO, photoelectric isolated, up to 7	
extendable modules	CTH2 277-0AC32

Table 1-3 BD Expansion Boards

Module Name	Specifications	Order number	
	Analog I/O Expansion Board, 2*12 bits precision	CTH2 AMS-03S1-EB	
	inputs, 1*12 bits precision voltage/current output		
	Analog I/O Expansion Board, 4*12 bits precision		
EDH-AIVI3-00	voltage inputs, 2*12 bits precision voltage output	CTHZ AMS-06S1-EB	
	Analog I/O expansion board, 4*12 bits precision	CTH2 AMS-06S2-EB	
EDH-AIVI3-00	voltage inputs, 2*12 bits precision current output		
	CAN Master communication expansion board,	CTH2 CAN-01S1-EB	
	1Mbps, photoelectric isolated		
	Charging guidance expansion board, two-channel		
	voltage input, single-channel PWM output.		

Notice

H224/H226L do not support CAN-01 master expansion board.

Features of expansion modules:

Filter technology

All the analog modules integrate CPU itself, with high stability due to advanced filter technology.

Digital module

All the digital I/O modules are equipped with optoelectronic isolation and disturbance rejection.

Temperature acquisition module

Integrated bus isolation, power isolation and interchannel isolation, high immunity from interference and high sampling accuracy, with intelligent fault diagnosis.

Intelligent module

The PID modules like Temperature Control can promote the respond speed of program executing.

Communication module

The expansion board for CAN master and the DP Slave module can significantly increase the interconnectivity and communication performance.

Analog I/O expansion board

The analog I/O expansion board has 2x12 bits voltage inputs and 1x12 bit voltage/current input.

1.3 Maximum System Configuration

- Up to 7 expansion modules per PLC connection
- Digital image register: 128DI/128DQ for H224/H226L; 640DI/640DQ for H224X/H226XL/H228XL, in which including private image for CAN communication.
- Analog image register: 32AI/32AQ for H224/H226L; 194AI/194AQ for H224X/H226XL/H228XL, in which including private image for CAN communication.

1.4 Network Architecture

The typical network architecture for CTH200 system is shown as following:

Figure 1-2 CTH200 Network Architecture

Note:

Inter-PLC communication

H224/H226L: 8 UDP_PPI connections, max. 200 bytes per connection. 5 MODBUS_TCP connections, maximum 240 bytes per connection.

H224X/H226XL: 8 UDP_PPI connections, 4 masters and 4 slaves, max. 200 bytes per connection. 4 MODBUS_TCP connections, including 2 masters and 2 slaves, max. 240 bytes per connection.

H228XL: 8 UDP_PPI connections, including 4 master and 4 slave connections, max. 200 bytes per connection. 6 MODBUS_TCP connections, including 3 masters and 3 slaves, max. 240 bytes per connection

> PLC connect with HMI (or third-party software), with HMI or the third-party software as master

UDP_PPI: H224/H226L connect up to 8 HMI while H224X/H226XL/H228XL up to 4.

MODBUS_TCP: H224/H226L can connect up to 5 HMI; H224X/H226XL up to 2 and H228XL up to 3.

- > CPU can access other devices as master, equivalently a master connection for the CPU itself.
- CPU can be accessed as slave by other devices, equivalently a slave connection for the CPU itself.

1.6 Standards and Specifications

CTH200 series PLC have been approved for various international and industrial standards, the specifications for operating environment are shown as table 1-4:

Environmental condition				
Items		H224/H226L	H224X/H226XL/H228XL	
Transport and storage				
Temperature		-25°C ~ 70°C	-40°C~+85°C	
Atmosphere press		1080hPa~660hPa(corresponding	hight-1000m ~ +3500m)	
Relative humidity		5%~95%, non-condensation	10%~95%, non-condensation	
Falling		1m, 5 times, transport package		
Working envi	ronment			
Tomporatura	Horizontal	0°C~55°C		
remperature	Vertical	0°C~45°C		
Atmosphere p	ress	1080hPa~795hPa(corresponding	hight-1000m ~ +2000m)	
Relative humic	dity	10%~95%, non-condensation		
		Lower salt mist, moist and dust fog		
Pollutant conc	entration	SO2<0.5ppm, relative humidity <60%, non-condensation		
		H2S<0.1ppm, relative humidity <60%, non-condensation		
EMC- interference rejection		on		
Electrostatic di	ischarge	Contact-discharge: ±4KV (grade	۹)	
IEC61000-4-2		Air-discharge: ±8KV (grade A)		
Electric fast-transient		Power line: 2KV, 5KHz(grade A)		
pulse group		Signal line: 2KV, 5KHz (I/O coupling clamp, grade A)		
IEC61000-4-4		1KV, 5KHz (COM coupling clamp, grade A)		
Surge		Power line: 2KV(asymmetric), 1KV(symmetric, grade B)		
IEC61000-4-5				
Radiofrequency		80MHz~1GHz, 10V/m, 80%AM(1KHz, grade A)		
electromagnetic radiation		1.4GHz~2GHz, 3V/m, 80%AM(1KHz)		
IEC61000-4-3		2GHz~2.7GHz, 1V/m, 80%AM(1KHz)		
Radiofrequenc	у	$0.15MHz_{80}MHz_{10}/m_{80}%AM(1KHz_{0})$		
conduction interference		15KHz~ 150 KHz 10 V/m 80 %AM(1KHz)		
IEC61000-4-6		$15 \text{KHZ} \sim 150 \text{KHZ}, 10 \text{ V/III}, 00\% \text{Aivi}(1 \text{KHZ})$		

Table 1-4 Standards and specifications of CTH200 series PLC

DC input short-interrupt and voltage change IEC61000-4-29	Short-interrupt: 10ms Voltage change: 80%~120%, 100ms		
Antidumping vibration wave IEC61000-4-12	Power line: 1KV Digital I/O(0(24V or higher): 1KV		
EMC – conduction and ra	adiated emission		
Radiation(noise) EMI EN55011, type A 1 group	Measuring distance: 10m 30MHz~230MHz, < 40dB(uV/m) peak value 230MHz~1000MHz, < 47dB(uV/m) peak value		
Conduction(noise) AC power interference EN55011, type A 1 group	Measuring distance: 10m 0.15~0.5MHz, < 79dB(uV/m)peak value;< 66dB(uV/m) average 0.5~5MHz, < 73dB(uV/m)peak value;< 60dB(uV/m) average 5~30MHz, < 73dB(uV/m)peak value;< 60dB(uV/m) average		
Environment test index			
Hot operation IEC60068-2	60℃ 16h		
Cold operation IEC60068-2	-10℃ 16h		
Hot startup IEC60068-2	60℃ 2h		
Cold startup IEC60068-2	-10℃ 2h		
Hot/cold cycle operation	3h of dwell time under -10 $^\circ\!\mathrm{C}$ ~60 $^\circ\!\mathrm{C}$, temperature rising speed 1 $^\circ\!\mathrm{C}$		
IEC60068-2	/min, 2 cycles		
Hot storage IEC60068-2	70℃ 72h		
Cold storage IEC60068-2	-40℃ 72h		
Hot/cold shock IEC60068-2	3h of dwell time under -40 $^\circ\!\mathrm{C}$ ~70 $^\circ\!\mathrm{C}$, temperature changing time<1min, 5 cycles		
Hot and humid IEC60068-2	40℃ 48h		
Alter hot and humid IEC60068-2	25°C~55°C 95%, 2 cycles		
Sine vibration(bare	5~150Hz, 0.05G²/Hz		
machine) IEC60068-2	150Hz~500Hz -3dB/oct, 1 hour/axis; X, Y and Z 3 axes in all		
Strike (bare machine)IEC60068-2	15G, 11ms pulse, 3 times/direction		
Hybrid gas erosion test	H2S: 0.1ppm, NO2: 0.2ppm, CL2: 0.02ppm, temperature: 30°C,		
IEC60068-2-60	humidity: 75%, period: 4 days		
High-press insulation tes	t index		
24V/5V standard circuit	500 VAC		
110V/220V circuit to earth	1500 VAC		
110V/220V circuit	1500 VAC		
110V/220V to 24V/5V	1500 VAC		
circuit			

2 **Getting Started**

Example in this chapter shows you how to program and compile as well as its connection with CTH200 series PLC in MagicWorks PLC.

Connecting to CTH200 PLC 2.1

After connecting the CTH200 CPU to program device with the RS485 cable, power it on.

CTH200 series PLC supports Ethernet communication, please connect the CTH200 CPU to program device with Standard Ethernet cable.

Power supply for CTH200 CPU

The following Figures are diagram for 2 models of CPU:

DC Power

Figure 2-1 Power up the CTH200

Warning

Don't install and wire the CTH200 series PLC with power on, faulty operation can cause serious damage for machines and personal death. Ensure disconnecting power while install or disassemble any electric device.

Connecting with RS485 cable

Figure 2-2 shows how to connect CTH200 CPU with programming device by RS485 cable.

Notice

Please install the drive for PLC program cable referring to Appendix K Instructions of ETHERNET_SET.

- 1. Connect USB port of the Cable to the communication port of program computer (PC), thus can generate a virtual serial port.
- 2. Connect RS485 interface of the cable to the Port0 or Port1 of CTH200 CPU.

Figure 2-2 Cable connection between CTH200 PLC and PC

PLC connection with net cable

Figure 2-3 illustrates how to use standard net cable to connect CTH200 PLC with PC.

Figure 2-3 connection between CTH200 PLC&PC using net cable

MagicWorks PLC

Double-click the icon **F** to start MagicWorks PLC software, select "File ->New" to create a new project. Figure 2-4 shows a project tree, in which you can click icons to open MagicWorks PLC components.

2.2 Communicate with CTH200

2.2.1 Serial Port Communication Mode

The steps for PPI communication with MagicWorks PLC:

1. Click the "Set PG/PC Interface" in the "Communications" screen. Select the interface, the default is "PC/PPI Cable (PPI)".

Communications		x		
Address		- TCD/ID > Pasitely DCIa GPE Fam		
Host :	GZ-20180084	Host:GZ-20180084		
		Set PG/PC Interface		
Kemote PLU:	10.1.10.66:20001 •	Access Point of the Application:		
PLC Type :	CPU 224 REL 02.01	$[{\tt MagioWorks PLC} \longrightarrow {\tt PC/PPI Cable (PPI)}] $		
🖌 Save PLC Type with	Project	(Standard for MagicWorks PLC)		
Network Parameters		Interface Parameter Setting:		
Taburé	0 I](TCP(TP) _> P]+.) PCT. CPP	PC/PPI Cable (PPI)		
Interface . CINSOU/20	0 Local(ICF/IF) -> Realter FCLE ODL	PC/PPI Cable (PPI)		
Protocol : TCP/IP		CP6453-RS485 (TCP/IP) -> Realtek PCIe GBE Family Controller		
		CTH300/200 Local (TCP/IP) -> Realtek PCIe GBE Family Controller		
Communication Monitor		CTH300/200 Remote_iNet (TCP/IP) -> Realtek PCIe GBE Family Cont CTH300/200 Remote MiCo (TCP/IP) -> Realtek PCIe GBE Family Con		
Time Out :	1s *			
Set PG/PC Interface				
		(Setting Parameters to a PC/PPI cable for a PPI network)		
		Properties OK Cancel Help		

Figure 2-5 MagicWorks PLC serial port communication interface

2. Select the "PC/PPI Cable (PPI)" in "Set PG/PC Interface", then click the "Properties" button in this dialog to set the communication parameters

Properties - PC/PPI Cable (PPI)	×	
Station Parameters Address: D Timeout: 1s Network Parameters	*	 1) PC/PPI Address: 0 2) Interface: COM1 3) Transmission rate: 9.6Kbps
Transmission Rate: 9.6 kbps Highest Station Address: 31	• •	
Connection Parameters Connect to Port: Use remote programming (CTSC191-GPRS)	V	

3. Click OK to return to the "Communications" page. Then double-click Refresh to find the PLC.

Communications		
Address		TCP/IP -> Realtek PCIe GBE Fam
Host :	GZ-20180084	Host:GZ-20180084
Remote PLC:	10.1.10.66:20001	• to Refresh
PLC Type :	CPU 224 REL 02.01	
🖌 Save PLC Type wi	th Project	
Network Parameters		
Interface : CTH300/200 Local(TCF/IP) \rightarrow Realtek PCIe GBE		Le GBE
Protocol : TCP/IP		
- Communication Moni	tor	
Time Out :	15	•
Set PG/PC Interface		OK

If communication failed, Please do examine as the following steps:

1) Check wiring

Please use the cable provided by COTRUST (Order No. CTS7-191-USB) and ensure the connector remained intact. Switch PLC to STOP when the communication protocol had changed previously.

2) Check the drive

The cable provided by COTRUST must have matched drive, please obtain the drive from the following site: http://www.co-trust.com

- 3) Check the communication settings
- Select the PPI protocol (PC/PPI Cable).
- > Ensure the selected COM port not hold by other programs.
- Select the suitable baud rate.

2.2.2 Ethernet Communication Mode

The steps for TCP/IP communication with MagicWorks PLC:

- 1. Click the "Set PG/PC Interface" in the "Communications" screen
- 2. Choose "CPU300/200 Local (TCP/IP) -> Realtek PCle GBE Family Controller"

Set PG/PC Interface X				
Access Point of the Application:				
MagicWorks PLC> CTH300/200 Local (TCP/IP) -> Realtek PCIe G +				
(Standard for MagicWorks PLC)				
Interface Parameter Setting:				
CTH300/200 Local (TCP/IP) -> Realtek PCIe GBE Family Controller				
PC/PPI Cable (PPI)				
CP6451-yMPI (TCP/IP) -> Realtek PCIe GBE Family Controller				
CP6453-RS485 (TCP/IP) -> Realtek PCIe GBE Family Controller				
CTH300/200 Local (TCP/IP) -> Realtek PCIe GBE Family Controller				
CTH300/200 Remote_iNet (TCP/IP) -> Realtek PCIe GBE Family Conti				
CTH300/200 Remote_MiCo (TCP/IP) -> Realtek PCIe GBE Family Con				
(Select this interface when programming with CTH200/300 integrated Ethernet port				
Froperties OK Cancel Help				

Figure 2-6 MagicWorks PLC Ethernet communication interface

3. Establish communication with CTH200 PLC: Double-Click the Refresh icon in the following dialog, MagicWorks PLC will search for and show the connected CTH200 PLC.

😨 Total of 1 PLC searched			x
Address Host : Remote IP : Remote PLC: PLC Type : ✓ Save PLC Type with Proje Network Parameters Interface : CTH300/200 Remo Protocol : TCP/IP Communication Monitor Time Out :	GZ-20180084 10.1.10.66:20001 10.1.10.66:20000 • CPU H226XL REL 02.01 ot te_MiCo (TCP/IP) → Realtek PC 4s •	CPU H226XL REL 02.01 10.1.10.66:20000 CPU H226XL REL 02.01 CPU H226XL REL 02.01	
Set PG/PC Interface		OK	

Users can choose the CTH200 station and click OK after searching. If the MagicWorks PLC hasn not found the CTH200 CPU, please check wring first and then validate the Communication settings, after which repeat the above steps. When the PLC communication has established, The IPs for PC and PLC should be in same segment but can not identical, as shown in the following figure, IP for PLC searched by PC is 192.168.1.202, then the PC IP should be 192.168.1.XXX (in which XXX ranges from 1 to-255). Please set PC IP as following procedures:

意 以太网 Status X	<u> 単 以太网 Properties</u> X	Internet 协议版本 4 (TCP/IPv4) Properties X
General Connection IPv4 Connectivity: Internet IPv6 Connectivity: No network access Media State: Enabled Duration: 14:58:25 Speed: 100.0 Mbps Dgtals	Networking Connect using:	General You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings. O gbtain an IP address automatically O Uge the following IP address: IP address: Suphert mask: O the stream
Activity Sent Received Bytes: 87,877,216 1,525,408,816 Properties Diagnose Diagnose	▲_SINATIC Industrial Ethermet (ISO) ▲ Itement 协议论系 6 (TCP/IP-6) ▲ 链路层拓扑发现响应程序 ✓ 《 Ⅲ	Default gateway: Olytain DNS server address automatically Image: Server addresses: Preferred DNS server: Alternate DNS server: Utail date settings upon exit
Glose	OK Cancel	OK Cancel
Step 1	Step 2	Step 3

2.2.3 Modify IP Address in System Block

After establishing communication connection, you can modify the IP address of CPU through the System Block in MagicWorks PLC.

Note: downloading the System Block into PLC to make the modification effective. Then you need to search PLC again to establish connection (refer to chapter 2.2.2 Ethernet Communication *Mode*)

2.3 Create Program Network

This section describes how to create, download and run PLC program for CTH200 PLC. The following program examples use 3 instructions to shift left 1 bit for value transferred in QB0 at 1s

interval. This example uses the ladder diagram editor to enter the program, and describes the program compilation, download and operation process.

Pictures below shows the ladder diagram and statement list to explain logic relationship in the program.

Figure 2-7 Example of CTH200 program

Segment comment:

Network 1:
LD SM0.1 // Enable by first scan of SM0.1
MOVB 1, QB0 // Transfer 1 into QB0
Network 2:
LD SM0.0 // Enable signal
AN T37 // Circulate timer signal
TON T37, 10 // Set timer T37, Time 100ms x 10 = 1s
Network 3:
LD T37 // Set enable pulse via T37
RLB QB0, 1 // QB0 shift 1 bit left, with the PLC LEDs light on at 1s interval.

2.3.1 Editing

Click the Program Block to open the program editor, as shown in figure 2-8. User can drag&drop the ladder instructions into program editor, or use the shortcut for available instructions directly.

🖹 STL/LAD - [OB1(MAIN) Project1\PLC4]	-	□ X
📅 <u>F</u> ile <u>E</u> dit <u>I</u> nsert <u>P</u> LC <u>V</u> iew <u>D</u> ebug <u>W</u> in	dows <u>H</u> elp	_ & ×
		→ +⊦ -() »
₽×	✓ Interface Symbol Var Type Data Type Comme	nt ^
★ Favorites	TEMP EN IN BOOL	
> 💼 Bit Logic	TEMP	
> 🔂 Clock	TEMP	~ ~
> Communication	<	>
Compare	PROGRAM COMMENTS	^
Counters	Hetwork 1 Network Title	
> Floating-Point Math	Reduced Constant	
> 💼 Integer Math	Network Comment	
> 💼 Interrupt		
> 📅 Logical Operations	1 ''	
> Move		
> The Program Control		
> Shift/Rotate	Wetwork 2	
> AB String		
> m lable		
> a SEC blocks		
FC blocks		
FB blocks		
iii Multiple instances		
> 🞁 Libraries	Hetwork 3	
		~
Instruction Pou <		>
		₽×
	Network 1 Row 1,	Col 1 INS

Figure 2-8 Program editor

2.3.2 Compiling

The program needs to be compiled when editing completely:

1) Select menu command "PLC -> Compile" or click Compile button

2) The output window at bottom will show status for compiling, if there occurs error, users can click the prompt to view details

Compiling PLC4 - Program Block... OB1(MAIN) Block Size = 93 (bytes), 0 errors, 0 warnings.

Figure 2-9 Program compile result

Save project:

- Select menu command "File -> Save as".
- > Enter the required project name in "Name" dialog.
- > Select the required project Storage.

Project Save As
Name: Project1(1) Storage: rks PLC2.14/MagicWorks PLC V2.15/Projects Browse OK Cancel Help

Figure 2-10 Project Storage

2.3.3 Downloading

Click the download icon **T** in toolbar or select the menu command "PLC -> Download" to download the program into CTH200, as shown in Figure 2-11 and 2-12. CTH200 PLC support read/write online, which means user can write instructions or parameters into PLC during Running, without switching to STOP.

💽 Download		×
PPI connection		
Use the Options button to select blocks to	download.	
Remote Address: 10.1.10.66:20000		CPV H226XL REL 02.01
Click Download to begin.		<u> </u>
Less Options	Downlo	Cancel
Options		
🖌 Program Block	To : PLC	
CT LIB1	To : PLC	
CT LIB2	To : PLC	
🖌 Init V Data Block	To : PLC	
System Block	To : PLC	
Recipes		
Data Logs		
EasyCAN Configuration		
Click Here for Help and Suppo	rt Close dialo	og on success RUN to STOP STOP to RUN

Figure 2-11 PPI connection to download program

😨 Download				x
CTH300/200 Remote HiCo (TCP/IP)				
Use the Options button to select blocks	to download.			
Remote Address: 10.1.10.66:20000			CPU H226XL REL	02.01
Click Download to begin.				
Less Options		Download	Cancel	
Options				5
✓ Program Block	To : PLC			
CT LIB1	To : PLC			
✓ CT LIB2	To : PLC			
🖌 Init V Data Block	To : PLC			
🗹 System Block	To : PLC			
Recipes				
Data Logs				
EasyCAN Configuration				
Click Here for Help and Sup	port [Close dialog on succ Prompt on RUN to STO Prompt on STOP to RU	ess P	

Figure 2-12 Ethernet connection to download program

2.3.4 Running

MagicWorks PLC can switch the CTH200 PLC into RUN mode and execute program when the Mode Switch of PLC set to RUN:

1) Click the RUN icon ▶ in toolbar or select the menu command "PLC -> RUN".

2) Click Yes to enter RUN mode and the CPU would execute program, Q0.0-Q0.7 will light on circularly at 1s interval, which means left shaft the value circularly in Q memory.

😨 Run		x
?	Place the PLC in RUN me	ode?
	Yes No	

Figure 2-13 Run program

Users can monitor the program via project tree -> state table. MagicWorks PLC would show the appropriate results. Click the icon or select menu command "PLC -> STOP" would stop the PLC.

3 Installation

The design of CTH200 PLC is convenient for installation, they can be fixed into backplane of the cabinet via mounting hole, or use the DIN clamp to mount on a standard DIN rail. It's compact structure allow users utilizing space efficiently.

This chapter shows you how to install and wiring the CTH200 PLC.

3.1 Important Notices

CTH200 PLC can be installed on the backplane of cabinet or on the standard DIN rail, vertically or horizontally. Users must observe the following notices:

Isolate the PLC with Heat, HV and Electronic noise

According to the general conventions, PLC with low voltage must be isolated with HV and electronic noise sources.

When mounted on the backplane of cabinet, the PLC should be arranged into lower temperature area of the cabinet to extend its lifetime.

The AC power line, high energy and high switching frequency DC line, low voltage signal line and communication cable should be avoided putting into one slot.

Make room for heat dissipation and wiring

CTH200 series PLC are designed with natural ventilation and heat dissipation, with at least 30mm space above and below the module. Distance between the front plane and back plane must be at least 80mm.

Notice

Comparing with horizontal installation, the max. Ambient temperature allowed with vertical installation should lack for 10°C, and CPU should be installed below all expansion modules.

Enough spaces should be left for cable wiring and connecting when installing CTH200 PLC.

Figure 3-1 Installation diagram

Power budget

CTH200 series PLC has an internal power supply offer 24VDC for itself, the expansion modules and other device.

It also provide 5VDC logic power supply, which can be used for power supply of any expansion in the system. Pay close attention to the system configuration to ensure that the CPU can provide the 5V power for the selected expansion module. If the configuration requires more power than the CPU provides, some expansion modules must be removed or select CPU that can provide more power.

CTH200 series CPU also provide 24VDC sensor power supply (except PSC266), which can provide 24VDC for input, relay coil on expansion module or other power supply. If the required power exceeds budget, an external 24VDC power supply must be added. For specific CTH200 CPU 24VDC sensor power budget, refer to Chapter 6.3 UDP_PPI Communication

If you need an external 24VDC power supply, make sure that the power supply is not connected in parallel to the sensor power supply of the CTH200 series CPU. To improve electrical noise protection, please connect to the common terminal (M) of different power sources.

Warning

An external 24VDC power supply connected in parallel to CTH200DC sensor power supply can cause a conflict because each power supply seeks to establish its own potential output. This conflict will shorten the service life of one or two power supplies or cause an immediate failure, then uncertain operation of the PLC system. The unpredictable operation may cause personal injury and equipment damage.

3.2 Installation Dimension

Both PLC and expansion modules have mounting holes, which can be installed at back plane conveniently. The following figure shows the Installation Dimension for all PLC and expansion modules.

Figure 3-2 CTH200 PLC Installation Dimension (unit: mm)

Table 3-1 Dimensions of CTH200 series PLC and expansion modules

PLC	L1(mm)	L2(mm)
CPU H224/H224X	137	129
CPU H226X/H226XL	196.5	188.5
CPU H228XL	200	195
CTH2 221-1BL32, CTH2 222-1BL32	407	129
CTH2 223-1BL32, CTH2 223-1PL32	137	
CTH2 221-1BF32, CTH2 222-1BF32, CTH2 222-1HF32	46	38
CTH2 223-1BF32, CTH2 223-1HF32, CTH2 232-0HB32	40	
CTH2 221-1BH32, CTH2 222-1BH32, CTH2 223-1BH32		
CTH2 223-1PH32, CTH2 231-0HC32, CTH2 235-0KD32	223-1PH32, CTH2 231-0HC32, CTH2 235-0KD32	
CTH2 231-0HF32, CTH2 231-1HF32, CTH2 231-5HF32	71.0	62.3
CTH2 231-7HB32, CTH2 231-7HC32, CTH2 231-7PB32		
CTH2 231-7PC32, CTH2 231-7PD32, CTH2 231-7PF32	71.5	
CTH2 231-7TF32, CTH2 231-7TD32, CTH2 231-7HF32		
CTH2 231-7ND32, CTH2 231-7NF32, CTH2 277-0AA32		
CTH2 277-0AB32		
CTH2 277-0AC32	90	82

3.3 Installation Method

CTH200 PLC can be installed on standard DIN35 rail or panel.

Prerequisites

Make sure the equipment has been powered off before assembling and disassembling, meanwhile, all related devices must also be powered off.

Warning

Don't assemble and disassemble the CTH200 PLC and related devices with power, otherwise can cause electric shock or malfunction, even serious damage, injury or death.

First get the CTH200 PLC powered off, then replacing and installing correctly. Meanwhile the direction and location must be correct when replacing modules, or it can result in damage, injury or death.

Caution

Incorrect modules would cause CTH200 PLC program failure.

Install/Disassemble CPU and expansion modules

Following the installation method below:

Mounting on panel

1) Locate the open holes according to the dimensions on Figure 3-1;

2) Fix the modules on backplane with appropriate screws;

3) If expansion modules are used, connect the flat cable for expansion modules to the extended port below the front cover.

- Mounting on DIN rail
- 1) Fix the rail on backplane with 80mm distance.
- 2) Open the DIN clamp below the module, lock the module back on DIN rail.

3) If expansion modules are used, connect the flat cable for expansion modules to the extended port below the front cover.

- 4) Spin the module to approach the DIN rail, then close the DIN clamp.
- 5) Check if the DIN clamp fit the rail closely.
- 6) Don't push the front of module, you can push the open holes instead to prevent damage.
- Mounting terminal strip
- 1) Open the front cover of the terminal position.
- 2) Make sure the module pins are alignment with the holes on terminal strip.
- 3) Push the terminal strip down into module and lock it up.

Caution

When mounting the CTH200 PLC vertically in high vibration environment, the DIN rail blocks should be used, thus backplane mounting is highly recommended to achieve high vibration protection.

• Disassemble CPU or expansion modules

1) Remove the power of CTH200 CPU.

2) Dismantle all cables and wires on module.

3) Open the front cover to pull up the extended flat cable from neighbor expansion module if there has one.

4) Remove the mounting screw or open the DIN clamp.

5) Remove the CPU and modules.

- Disassemble terminal strip
- 1) Open the cover on terminal strip.
- 2) Plug the screwdriver into the slot of terminal block as shown in the following picture.
- 3) Pull down and pray the strip out.

Figure 3-3 Dismantle the terminal strip

3.4 Grounding and Wiring

It's important to implement wire and ground correctly for all electrical equipment, which can ensure the best system operation features and provide better noise protection.

CTH200 PLC and related devices must all be powered off before grounding and wiring. The available Electrical coding rules must be obeyed and related safety standards should be followed while installing and operating all devices. Keep contact with regional standard request.

Please always following appropriate safety precautions and ensure that power of CTH200 PLC is cut-off before attempting to install or remove the CTH200 PLC or related equipment.

Warning

Grounding or wiring with power could result in death or serious injury to personnel, and/or damage to equipment.

Safety must be considered when designing ground and wire for CTH200 system in case triggering the device malfunction. Therefore, all safety rules should be implemented to protect

operator and device.

Warning

The control equipment may cause the misoperation of the equipment it controls, which may lead to death or serious personal injury and equipment damage. Therefore, the TrustPLC CTH200 system must have the emergency stop function, electromechanical interlock or other redundant safety facilities independent of the CTH200 system.

3.5 Suppression Circuit

Inductive loads should be implemented with suppression circuits to limit voltage rise when the control output turns off. Suppression circuits protect your outputs from premature failure due to high inductive switching currents. In addition, suppression circuits limit the electrical noise generated during switching inductive loads.

Caution

The effectiveness of a given suppression circuit depends on the application, and you must verify it for your particular use. Ensure that all components used in your suppression circuit are rated for use in the application.

DC Outputs and Relay Outputs which Control DC Loads

The DC outputs have internal protection that is adequate for most applications. Since the relays can be used for either a DC or an AC load, internal protection is not provided.

Figure 3-4 shows a sample suppression circuit for a DC load. In most applications, the addition of a diode (A) across the inductive load is suitable, but if your application requires faster turn-off times, then the addition of a Zener diode (B) is recommended. Make sure the Zener diode can provide enough current for output circuit.

Figure 3-4 Suppression Circuit for DC Load

AC Outputs and Relay Outputs for AC load

The AC outputs have internal protection that is adequate for most applications. Since the relays can be used for either DC or AC load, internal protection is not provided.

Figure 3-5 shows an instance for the suppression circuit of AC load. In most applications, the additional MOV resistor can be used for limit the peak voltage and protect the internal circuit in CTH200 PLC. Make sure the operation voltage for MOV is at least 20% greater than regular line voltage.

Figure 3-5 Suppression Circuit for an AC Load

4 Technical Specifications

CTH200 series PLC and the expansion modules enjoys different specifications.

4.1 General Specifications

Table 4-1-1 Electrical and environmental specifications

Items	Description		
Rated input voltage	AC: 220V, DC: 24V		
Voltage range	AC: 85 V~265 V, DC: 20.4 ~ 28.8V		
Operation temperature	0 ~ 55℃		
Storage temperature	-25 ~ 70 °C		
Ventilation	Inlet Air 50.8 mm below unit		
Humidity	5 ~ 95% (non-condensing)		
Electrical Interforence	Pulse width 50ns, repetition frequency 5kHz, 2,000V voltage		
	peak		
Vibration	Frequency 10~57Hz, amplitude 0.1mm, acceleration 1.0g, 10		
Vibration	times each dimension		
Impact resistance	15g for 11ms, 3 times at 3 dimensions		
High voltage	Terminal to ground 2200VDC, I/O port to other terminal		
insulation	1500VAC, dwell time 1 minute		
Ground connection	Type 3 (single point grounding with multi-branch)		
Operating	Dust proof, Noncorrosive environment		
environment			
Toppling	100 mm, 4 drops, unpacked		
Free Fall	1 m, 5 times, packed for shipment		

4.2 CPU

4.2.1 CPU Specifications

This section introduces the whole general specifications for CTH200 PLC, including Inputs, Outputs and Power Supply.

Table 4-2-1 Performance specifications of CTH200 PLC

Items	Description				
	H224/H226L	H224X/H226XL	H228XL		
Dimension(W×H×D)	137×96×71.3mm	196.5×96×71.3mm	200×100×69.5mm		
Boolean execution speed		0.22µs	0.15µs		
-------------------------	-------------------------	--	--	--	--
Float execution speed		12µs	8µs		
User Program		8+4KB	H224X: 12+4KB H226XL: 24+48KB H228XL: 48+24+24KB		
Data s	pace	8KB	H224X: 8+100KB H226XL/H228XL: 10+100KB		
Data	hold with	Max.8KB, permanent	Max. 10KB, 200 hours		
power	-off	FlashROM	Super-capacitor and lithium battery		
Digital	I/O Image	128DI/128DQ (not including image for CAN communication)	640DI/640DQ (including image for CAN communication)		
Analog	g I/O Image	32AI/32AQ (not including image for CAN communication)	194AI/194AQ (including image for CAN communication)		
Bit Me	mory (M)	256 bits			
Local I	Memory (L)	64 bytes			
SCR (S)	256 bits			
Pulse	inputs	14	36		
HSC	Single-phase	4 x 50KHz (HSC0~HSC3), only support HSC mode 0 and 9	6 x 50KHz (HSC0~HSC5)		
	Two-phase		4 x 30KHz (not including HSC3 and HSC5)		
HSC ir	nput voltage	18~26V			
HSP (Trans	output istor output)	Motion control outputs: 3 at 50KHz, Q0.0~Q0.2	Motion control outputs: 2 at 50KHz PTO/PWM: 2 at 50KHz Q0.0~Q0.1		
Timed	interrupts	2 with 1 ms resolution			
Edge i	nterrupts	4 up and/or 4 down			
Max.	No. of	7			
expan	sion modules	1			
BD ex	pansion board	1			
CAN	expansion	No	Support		
board					
LED indicator		SF (RED): ON - system error, OFF - normal RUN (Green): ON - Run, OFF - Stop STOP (Orange): ON - Stop, OFF - Run RMC (Green): ON - Enable RMC, OFF - Disable RMC			
Run sv	witch	RUN/STOP, reset IP settings with 6 times dial in 2s (Note: RUN \rightarrow STOP counts 1 and so as with STOP \rightarrow RUN)			

Analog potentionmeter	None	2 with 8 bits resolution None					
Real-time clock	Built-in with resolution	Built-in with resolution of ±120s/m.					
Program Card	Supported. Users can	choose to "overwrite/not overwrite" the					
Plografii Caru	program/data blocks.						
Battery Card	No	Supported					
Memory Card	No	Supported					
	256 in all	512 in all					
Timor	1ms: 4	1ms: 4					
Timer	10ms: 16	10ms: 272					
	100ms: 236	100ms: 236					
Counter	256 (data-hold while power-off)						

Table 4-2-2 Power specifications for CTH200 PLC

ltem	Description					
Input Voltage	85~264VAC (47-63HZ), 20.4~28.8VDC, with anti-reverse					
input voltage	protection					
Inrush current	8A @ 264VAC, 6A @ 28.8VDC					
Icolation (field to logic)	AC: 1500VAC					
	DC: Not isolated					
Hold up time (newer off)	120/240VAC: 10ms/20ms					
Hold up time (power on)	24VDC: 10ms					
Expansion bus +5V	660mA					
BD expansion board +5V	200mA					
Communication port +5V 10mA, 100R resistor						
Sensor supply 24VDC <=300mA, ripple noise (<10MHZ) <1V PP						

Table 4-2-3 Communication specifications for CTH200 PLC

CPU	H224/H226L	H224X/H226XL	H228XL		
RS485 communication					
	H224/H224X: 2, 1 PPI and 1 freeport				
COM ports numbers	H226L/H226XL: 2, F	PI/Freeport			
	H228XL: 2, PPI/Free	eport			
PPI Baud rate	9.6Kbps, 19.2Kbps,	187.5Kbps			
Freeport Baud rate	1.2Kbps~115.2Kbps				
Cable length (max)	With isolated repeater: 1000m at 187.5Kbps, 1200m at 38.4Kbps				
Cable length (max.)	Without isolated repeater: 50m				
Stations (max.) 32 for each segment, 126 for each network					
Masters (max.)	32				
Isolation	No				
Ethernet communication	Ethernet communication				
Interface type	1 standard Ethernet port				
Communication					
standard					

Transmission speed	10Mbps/100Mbps self-adaption				
Self-adaption cross-connect	Yes	No			
Industrial Ethernet interface (10/100Mbps)	RJ45				
Protocol type	UDP_PPI, MODBUS	_TCP, Ethernet			
Configuration method	PC Searching PLC and downloading configuration via Ethernet port				
Connections (Max.)	Up to 8 UDP and 6 T	CP connections for each PLC			
	8 UDP_PPI				
		8 UDP_PPI connections, 4 masters/4			
IT connection (Max.)	5 MODBUS_TCP	slaves.			
	connections,	4 MODBUS_TCP connections, 2 masters/2			
	irrespective of	slaves			
	master/slave				
User data volume	Up to 200 bytes used for TCP/IP				
	Up to 240 bytes used for MODBUS_TCP				
СОМ	Local: 1~65535 Remote MiCO server: mico.co-trust.com Port: 20000				
Time for start or restart after reset	Approx. 5s				
	SF (RED): ON - system error, OFF - normal				
	RUN (Green): ON - Run, OFF - Stop				
Indiantoro	STOP (Orange): ON - Stop, OFF - Run				
Indicators	RMC (Green): ON - Enable RMC, OFF - Disable RMC				
	LINK/ACT (Green): ON - connected, flash - transfer, OFF -				
	disconnected				
Cable length (Max.)	100m				
Isolation	COM port is isolated				
Cable	Ethernet: CAT5e shield cable				

Item		H224/H224X	H228XL			
loout	Counts	14	24	36		
input	Туре	Drain/Source				
Rated Volta	ge	24VDC				
Voltage Range 20.4~28.8VDC						
Surge		35VDC for 0.5s				
Logic 1 (min.)		15 VDC, 2.5mA				
Logic 0 (max.)		5 VDC, 1mA				
Permissible leakage		1mA				
current (max.)						

Input filter		Configurable, H224/H226L support 3.4ms and 6.4ms; H224X/H226XL/H228XL support 0.2ms, 0.4ms, 0.8ms, 1.6ms,		
		3.2ms, 6.4ms, 12.8ms, default as 6.4ms		
Isolation (field to logic)		500VAC for 1 minute		
Isolation gro	oups	Refer to wiring diagrams		
Inputs on simultaneously		All		
Max Cable	Unshielded	300 m for normal inputs		
length Shielded		500 m for normal inputs, 50 m for HSC inputs		

Table 4-2-5 Digital output specifications of CTH200 CPUs

Items		Transistor	ay			
		H224/H226L	H224/H226L	H228XL		
		H224X/H226XL	H224X/H226XL	HEEOKE		
Туре		Solid State-MOSFET (Sourcing)	Dry contact			
Rated volt	age	24VDC	24VDC or 110V/22	20VAC		
Voltage Ra	ange	20.4~28.8VDC	5~30VDC: 5~250V	'AC		
Max Surge	e current	8A for 100ms	5A for 4s@10% du	ity cycle		
Max Rate point	d current per	0.5A	2.0A			
Max Rated common	d current per	6A	8A			
Max Lamp	load	5W	DC 30W, AC 200W	I		
On State r (contact)	esistance	0.3 Ω typical (0.6 Ω max.)	0.2Ω (maximum when new)			
Isolation C (galvanic,	Optical field to logic)	500VAC for 1 minute	1500VAC for 1 minute			
		H224/H226L(transistor): max 15µs				
	Off to on	H224/H226L(relay): max 50µs				
		H224X/H226XL(transistor): 2µs(Q0.0, Q0.1), max 15µs (all other)				
Delay		H224X/H226XL/H228XL(relay): max 10ms				
(max.)		H224/H226L(transistor): max 130µs				
	On to off	H224/H226L(relay): max 200µs				
		H224X/H226XL(transistor): 10µs(Q0.0, Q0.1), max 130µs (others)				
		H224X/H226XL/H228XL(rel	ay): max 10ms			
Lifetime m	lechanical		10,000,000 (no-loa	ud)		
cycles						
Lifetime co	ontacts	100,000 (rated load 2A)				
Outputs on		All				
simultaneously						
Connectin	g two outputs	No	Yes, only outputs in	n same group		
in parallel	Objection	500		-		
Max Cabl	e Snielded	500m				
length Unshielded		150m				

Specifications of program and data memory

Items	Description				
Instructions	Basic instructio	Basic instruction set for CTH200			
Software	MagicWorks PLC/Step7 MicroWIN				
Continaro	(Program for us	ing Ethernet port is only supported with MagicWork PLC)			
Interface	RS485/Ethernet	t port			
Program online	H224X/H226XL	/H228XL			
Program					
language	STULAD	STULAD			
	Types/No.	Main program: 1(OB1)			
		Subprogram: 128(0-127)			
DOLL		Interrupt routine: 126(2-127), OB0 reserved, OB1 as main			
FOU		program			
	New Constants	Main Program: 8 levels			
	Nesting depth	Interrupt routine: 1 level			
Accumulator	4				
	MODBUS RTU Communication library				
Built in library	MODBUS TCP Communication library				
Duilt-In Ilbrary	PID_T Communication library (H224/H226L supports 16 channels;				
	H224X/H226XL/H228XL supports 64 channels)				

T 1 1 4 9 9	-	o		OTUDAD	
Table4-2-6	Program	Specifications	ot	CTH200	PLC

Table 4-2-7 Data memory specifications

Items	H224/H226L	H224X/H226XL /H228XL	н	224/H226L	H224X/H226XL/ H228XL	
	Digital input	image area (I)	I	Digital output image area (Q)		
Bit address range	10.0~115.7	10.0~179.7	Q0.0~Q15.7		Q0.0~Q79.7	
Byte address range	IB0~IB15	IB0~IB79	QB	0~QB15	QB0~QB79	
Word address range	IW0~IW14	IW0~IW78	QW	V0~QW14	QW0~QW78	
DWord address range	ID0~ID12	ID0~ID76	QD	00~QD12	QD0~QD76	
Access	Immediate /direct/indirect access					
Data hold	Power-down data retention is not supported					
	Analog input image area (AI) Anal			nalog output	image area (AQ)	
Bits for each channel	16 bits					
Word address range	AIW0~AIW62	AIW0~AIW386	AQ	W0~AQW62	AQW0~AQW386	
Access	Immediate /direct/indirect access					
Data hold	Power-down data retention is not supported					
	Variable memory(V)					
	H224/H226L	H224X		H2262	XL/H228XL	
Storage (bytes)	8K	8K (extend up t 108K)	0 10K (extend u		up to 110K)	

Bit address range	V0.0~V8191.7	V0.0~V8191.7	V0.0~V10239.7
Byte address range	VB0~VB8191	VB0~VB8191	VB0~VB10239
Word address range	VW0~VW8190	VW0~VW8190	VW0~VW10238
DWord address range	VD0~VD8188	VD0~VD8188	VD0~VD10236
Access	Immediate /direct/i	ndirect access	
Data hold	Power-down data	retention is not supp	ported
		Special men	nory (SM)
	H224/H226L	H224X/H226XL/H	228XL
Storage	550bytes	650bytes	
Bit address range	SM0.0~SM549.7	SM0.0~SM649.7	
Byte address range	SMB0~SMB549	SMB0~SMB649	
Word address range	SMW0~SMW548	SMW0~SMW648	
DWord address range	SMD0~SMD546	SMD0~SMD646	
Access	The first 30 bytes access	can be accessed wi	ith read-only, support direct/indirect
Note: For detailed	l information about S	SM, refer to append	ix L Instruction Set.
Internal memory	(M)		
Storage (bytes)	32 bytes		
Bit address range	M0.0~M31.7		
Byte address range	MB0~MB31		
Word address range	MW0~MW30		
DWord address range	MD0~MD28		
Access	Direct /indirect acc	ess	
Data hold	Configurable as al	or partial retention	at power-down
Local variable (L))		
Storage (bytes)	64 bytes		
Bit address range	L0.0~L63.7		
Byte address range	LB0~LB63		
Word address range	LW0~LW62		
DWord address range	LD0~LD60		
Access	Direct access		
Data hold	Retention for subp retention.	rogram (only for H2	24X and H226XL), no data
Accumulator reg	ister (AC)		
Counts	4		
Bit address range	Not support		
Byte address range	AC0~AC3		
Word address range	AC0~AC3		

DWord address range	AC0~AC3			
Access	Direct access			
Data hold	Not support			
Sequence Contro	ol Relay (S)			
Storage (bytes)	32			
Bit address range	S0.0~S31.7			
Byte address range	SB0~SB31			
Word address range	SW0~SW30			
DWord address range	SD0~SD28			
Access	Direct /indirect a	access		
Data hold	Not support			
Timer (T) - H224/	H226L			l l l l l l l l l l l l l l l l l l l
Туре	Resolution	Quantity	Number	Max. time
	1ms	2	T0, T64	32.767s
TONR	10ms	8	T1~T4, T65~T68	327.67s
	100ms	54	T5~T31, T69~T95	3276.7s
	1ms	2	T32, T96	32.767s
TON/TOF	10ms	8	T33~T36, T97~T100	327.67s
	100ms	182	T37~T63, T101~T255	3276.7s
Timer (T) - H224X	(/H226XL/H228X	L		
Туре	Resolution	Quantity	Number	Max. time
	1ms	2	T0, T64	32.767s
TONR	10ms	8	T1~T4, T65~T68	327.67s
	100ms	54	T5~T31, T69~T95	3276.7s
	1	-		
-	ims	2	T32, T96	32.767s
TON/TOF	10ms	2 8+256	T32, T96 T33~T36, T97~T100, T256~T511	32.767s 327.67s
TON/TOF	10ms 100ms	2 8+256 182	T32, T96 T33~T36, T97~T100, T256~T511 T37~T63, T101~T255	32.767s 327.67s 3276.7s
	10ms 100ms Counter registe	2 8+256 182 r support bo	T32, T96 T33~T36, T97~T100, T256~T511 T37~T63, T101~T255 th direct and indirect acce	32.767s 327.67s 3276.7s ess, only direct
TON/TOF Access	10ms 100ms Counter registe access for statu	2 8+256 182 r support bo	T32, T96 T33~T36, T97~T100, T256~T511 T37~T63, T101~T255 th direct and indirect acce	32.767s 327.67s 3276.7s ess, only direct
TON/TOF Access Retention	10ms 100ms Counter registe access for statu Configurable for	2 8+256 182 r support bo is bit r the current	T32, T96 T33~T36, T97~T100, T256~T511 T37~T63, T101~T255 th direct and indirect acce count value, not for statu	32.767s 327.67s 3276.7s ess, only direct s bit
TON/TOF Access Retention Counter (C)	10ms 100ms Counter registe access for statu Configurable fo	2 8+256 182 r support bo is bit r the current	T32, T96 T33~T36, T97~T100, T256~T511 T37~T63, T101~T255 th direct and indirect acce count value, not for statu	32.767s 327.67s 3276.7s ess, only direct s bit
TON/TOF Access Retention Counter (C) No.	10ms 100ms Counter registe access for statu Configurable fo	2 8+256 182 r support bo is bit r the current	T32, T96 T33~T36, T97~T100, T256~T511 T37~T63, T101~T255 th direct and indirect acce count value, not for statu	32.767s 327.67s 3276.7s ess, only direct s bit
TON/TOF Access Retention Counter (C) No. Counting mode	10ms 100ms Counter registe access for statu Configurable fo 256 Upward/downw	2 8+256 182 r support bo is bit r the current	T32, T96 T33~T36, T97~T100, T256~T511 T37~T63, T101~T255 th direct and indirect acce count value, not for statu ward and downward	32.767s 327.67s 3276.7s ess, only direct s bit
TON/TOF Access Retention Counter (C) No. Counting mode Max count value	10ms 100ms Counter registe access for statu Configurable for 256 Upward/downw 32767	2 8+256 182 r support bo is bit r the current ard/both upv	T32, T96 T33~T36, T97~T100, T256~T511 T37~T63, T101~T255 th direct and indirect acce count value, not for statu ward and downward	32.767s 327.67s 3276.7s ess, only direct s bit
TON/TOF Access Retention Counter (C) No. Counting mode Max count value Access	10ms 100ms Counter registe access for statu Configurable fo 256 Upward/downw 32767 Support direct/in accessing for st	2 8+256 182 r support bo is bit r the current ard/both upv ndirect acce atus bit	T32, T96 T33~T36, T97~T100, T256~T511 T37~T63, T101~T255 th direct and indirect acce count value, not for statu ward and downward ssing for counter register,	32.767s 327.67s 3276.7s ess, only direct s bit only direct

Table 4-2-8 Data types of CTH200 PLC

Туре	Size	Description	Value range
BOOL	1bit	BOOL value	0~1
Byte	8bits	Unsigned byte	0~255

Word	16bits	Unsigned integer	0~65535
Integer	16bits	Signed integer	-32768~+32767
Dword	32bits	Unsigned double integer	0~4294967295
Double Integer	32bits	Signed double integer	-2147483648~+2147483647
Real	32bits	IEEE 32 bits float	+1.175495E-38~+3.402823E+38 -1.175495E-38~-3.402823E+38
String	1~255 bytes	ASCII string: 1 bytes characters + ASCII characters	None

Password access control

Table 4-2-9 Password access control of CTH200

Items	Level 1	Level 2	Level 3	Level 4
Read-write user data	Y	Y	Y	Y
RUN/Stop/power on reset	Y	Y	Y	Y
Read-write real time clock	Y	Y	Y	Y
Write Q at STOP	Y	Validate password	Validate password	Validate password
Mandatory data	Y	Validate password	Validate password	Validate password
Upload program block/DB/hardware configuration	Y	Y	Validate password	Ν
Download program block/DB/hardware configuration	Y	Validate password	Validate password	Validate password (hardware configuration is not permitted to download)
Clear program block/DB/hardware configuration	Y	Validate password	Validate password	Validate password (hardware configuration is not permitted to delete. Allow to delete all three)
Edit at Runtime	Y	Validate password	Validate password	N
First or multiple scan	Y	Validate password	Validate password	Validate password
Refresh scan	Y	Validate password	Validate password	Validate password
Project Comparison	Y	Y	Validate password	N
Program condition monitoring (timestamp compare is allowed)	Y	Y	Y	Y
Program condition monitoring (timestamp compare is not allowed)	Y	Validate password	Validate password	Ν

The real time clock and interrupt

Table 4-2-10 Real time clock of CTH200

Factory setting	Not set, fixed at 00:00:00 of 1/1/1990, Sunday
	·

Retention at power down	About 100h (typical at 25°C)									
Resolution	Bias <120s each month									
Read clock	Read via TODR/TODRX	instruction or software								
Set clock	Set via TODW/TODWX i	nstruction or software								
General clock format (8	k format (8 bytes)									
T BYTE	Description	Byte data								
0	Year(0-99)	Current year (BCD value)								
1	Month(1-12)	Current Month (BCD value)								
2	Date(1-31)	Current date (BCD value)								
3	Hour(0-23)	Current hour (BCD value)								
4	Minute(0-59)	Current minute (BCD value)								
5	Second(0-59)	Current second (BCD value)								
6	0	Reserved, always set as 00								
7	Day of the week(1-7)	The current day of the week, 1=Sunday (BCD value)								
Extended clock format	(19 bytes)									
0	Year(0-99)	Current year (BCD value)								
1	Month(1-12)	Current Month (BCD value)								
2	Date(1-31)	Current date (BCD value)								
3	Hour(0-23)	Current hour (BCD value)								
4	Minute(0-59)	Current minute (BCD value)								
5	Second(0-59)	Current second (BCD value)								
6	0	Reserved, always set as 00								
7	Day of the week (1-7)	The current day of the week, 1=Sunday (BCD value)								
8	Time zone	00H-03H, 08H,10H-13H, FFH								
9	Modified hours (0-23)	Modified values, hour (BCD value)								
10	Modified minutes (0-59)	Modified values, minute (BCD value)								
11	Starting month (1-12)	Starting month in DST (BCD value)								
12	Starting date (1-31)	Starting date in DST (BCD value)								
13	Starting hour (0-23)	Starting hour in DST(BCD value)								
14	Starting minute (0-59)	Starting minute in DST (BCD value)								
15	Ending month (1-12)	Ending month in DST (BCD value)								
16	Ending date (1-31)	Ending date in DST (BCD value)								
17	Ending hour (0-23)	Ending hour in DST (BCD value)								
18	Ending minute (0-59)	Ending minute in DST (BCD value)								

The following table lists interrupts supported by CTH200.

Table 4-2-11 Interrupts supported by CTH200

Groups and priority	Number	Group	Description
Communication	8	0	Port 0: receive character
and diagnostic	9	0	Port 0: transfer complete
events	23	0	Port 0: complete receiving message
(Top Priority)	24	0	Port 1: complete receiving message

	25	0	Port 1: receive character				
	26	0	Port 1: transfer complete				
	36	0	Module diagnostics interrupt				
	0	1	Rising edge, I0.0				
	2	1	Rising edge, I0.1				
	4	1	Rising edge, I0.2				
	6	1	Rising edge, I0.3				
	1	1	Falling edge, 10.0				
	3	1	Falling edge, I0.1				
	5	1	Falling edge, I0.2				
	7	1	Falling edge, I0.3				
	12	1	HSC0 CV=PV				
	27	1	HSC0 direction change				
Disease	28	1	HSC0 External recovery/Zphase				
Disperse	13	1	HSC1 CV=PV				
(Medium Priority)	14	1	HSC1 direction change				
F HOHty)	15	1	HSC1 External recovery				
	16	1	HSC2 CV=PV				
	17	1	HSC2 direction change				
	18	1	HSC2 External recovery				
	19	1	PTO 0 complete interrupt				
	20	1	PTO 1 complete interrupt				
	32	1	HSC3 CV=PV				
	29	1	HSC4 CV=P				
	30	1	HSC4 direction change				
	31	1	HSC4 External recovery/Z phase				
	33	1	HSC5 CV=PV				
	10	2	Timer interrupt 0				
Timer	11	2	Tmer interrupt 1				
(Lowest priority)	21	2	Timer T32 CT=PT interrupt				
	22	2	Timer T96 CT=PT interrupt				

4.2.2 Diagrams of CPU Structure and Wiring

PLC structure

Figure 4-1 CTH2 214-1AD33-0X24

Figure 4-2 CTH2 214-1BD33-0X24

Figure 4-3 CTH2 216-2AD33-0X40

Figure 4-4 CTH2 216-2BD33-0X40

Figure 4-5 CTH2-218-3BX33-0X60

Wiring Diagrams

Figure 4-6 CTH2 214-1AD33-0X24 transistor output

1M	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	1.0	1.1	1.2	1.3	1.4	2M	1.5	1.6	1.7	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	٠	•
\bigcirc	\oslash	Ø	\oslash																								
•														•													

Figure 4-8 CTH2 216-2AD33-0X40 transistor output

00000000000000000000000000000000000000	1M	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	1.0	1.1	1.2	1.3	1.4	2M	1.5	1.6	1.7	2.0	2.1	2.2	2.3	2.4	2.5	5 2	2.6	2.7	М	L+
	\oslash	Ø	\circ	\oslash	\oslash	$) \bigcirc$) (0	\oslash	\oslash	\oslash																		
	+														+										`				

Figure 4-9 CTH2 216-2BD33-0X40 relay output

Figure 4-10 CTH2 214-1AX33-0X24 transistor output

Figure 4-13 CTH2 216-2BX33-0X40 relay output

Figure 4-14 CTH2 218-3BX33-0X60 relay output

4.2.3 Definition of Communication Port

CTH200 series PLC, with RS485 interface and standard Ethernet port, supports both serial and Ethernet communication, definition of these two port shows as below:

Connector	Pin Number	Port 0	Port 1
	1	Shell ground	Shell ground
	2	+24V Return	+24V Return
	3	RS485 signal B	RS485 signal B
1	4	RTS (TTL)	RTS (TTL)
6	5	+5V Return	+5V Return
9	6	+5V, 100Ω	+5V, 100Ω
5	7	+24V	+24V
	8	RS485 signal A	RS485 signal A
\bigcirc	9	NC	NC
	Connector shell	Shell ground	Shell ground

Table 4-2-12 Definition of standard RS485 communication port

Table 4-2-13 4-	oin RS485	Communication	port (o	only for (PU H228XL)
	511110405	Communication	poir (0	/iiiy 101 C	/ 0/1220///

Connector	Pin Number	Signal	Definition
	1	0V	Logic common
	2	A	RS485 signal A
	3	В	RS485 signal B
	4	Т	Terminal resistor,
4			connect with pin2

RJ45 Connector	Pin Number	Signal	Definition
	1	TX+	Data send positive
4.737	2	TX-	Data send negative
1:1X+ 2:TX-	3	RX+	Data receive positive
3:RX+ 4:TERM	4	TERM	
5:TERM 6:RX-	5	TERM	
7:TERM 8:TERM	6	RX-	Data receive negative
	7	TERM	
	8	TERM	

Table 4-2-14 RJ45 Ethernet port

Note

Define RS485 signal of some meters as A-positive, B-negative. Positive to positive and negative to negative when wiring (universal).

4.2.4 DIP switch

Table 4-2-15 D	efinition of	DIP	switch
----------------	--------------	-----	--------

Two-state switch	State	Operation	Signal definition
	ON	UP	RUN
	OFF	Down	STOP
		Dial 6 times in	Reset IP (RUN->STOP
		2 seconds	counts, vice versa)

4.2.5 Making Standard Net Cable

It is recommended to use standard network cable for CTH200 communication. There's two forms of standard network cable: parallel line and cross line. The ends of parallel lines are standard 568A or 568B; the cross line is standard 568A at one end while 568B at the other end. The standard line sequence color of 568A/568B shows as below:

568B standard line sequence: white and orange, orange, white and green, blue, white and blue, green, white and brown, brown.

568A standard line sequence: white and green, green, white and orange, blue, white and blue, orange, white and brown, brown.

How to make standard cable:

Parallel line(both sides are 568A standard or 568B standard)	

Cross line(One end is 568A standard and the other end is 568B standard)

4.3 Digital Expansion Modules Specifications

CTH200 series PLC are equipped with variety of digital expansion modules, including input, output and I/O modules.

Table 1 2 1	CTUOOO	aariaa DI		ovnonoion	madulaa	ordor info
12016 4-2-1		senes PL	U GIGIIAI	expansion	modules	order mio
	• • • • • • •					

Expansion modules	Order No.
SM221 digital input module, 8 inputs, 24VDC	CTH2 221-1BF32
SM221 digital input module, 16 inputs, 24VDC	CTH2 221-1BH32
SM221 digital input module, 32 inputs, 24VDC	CTH2 221-1BL32
SM222 digital output module, 8 transistor outputs, 24VDC, 0.5A(with output protection)	CTH2 222-1BF32
SM222 digital output module, 16 transistor outputs, 24VDC, 0.5A(with output protection)	CTH2 222-1BH32
SM222 digital output module, 32 transistor outputs, 24VDC, 0.5A(with output protection)	CTH2 222-1BL32
SM222 digital output module, 8 relay outputs, 2A	CTH2 222-1HF32
SM222 digital output module, 16 relay outputs, 2A	CTH2 222-1HH32
SM223 digital I/O module, 4 24VDC inputs, 4 transistor outputs, 24VDC, 0.5A(with output protection)	CTH2 223-1BF32
SM223 digital I/O module, 8 24VDC inputs, 8 transistor outputs, 24VDC, 0.5A(with output protection)	CTH2 223-1BH32
SM223 digital I/O module, 16 24VDC inputs, 16 transistor outputs, 24VDC, 0.5A(with output protection)	CTH2 223-1BL32
SM223 digital I/O module, 4 24VDC inputs, 4 transistor outputs, 2A	CTH2 223-1HF32
SM223 digital I/O module, 8 24VDC inputs, 8 transistor outputs, 2A	CTH2 223-1PH32
SM223 digital I/O module, 16 24VDC inputs, 16 transistor outputs, 2A	CTH2 223-1PL32

4.3.1 Digital Input Modules Specifications

Table 4-3-2 Digital Input Modules Specifications

Features	8 inputs, 24VDC	16 inputs, 24VDC	32 inputs, 24VDC
Order No.	CTH2 221-1BF32	CTH2 221-1BH32	CTH2 221-1BL32
Dimension(W×H×D)	46 × 96 × 62mm	71.3 × 96 × 62mm	138 × 96 × 62mm
Power supply cons	sumption		
Power	2W	3W	
+5VDC current	57mA	79mA	179mA
Input features			
Counts	8	16	32
Туре	Drain/Source		
Input voltage			
Rated voltage	24VDC		
Max. Permit Voltage	30VDC		
Surge	35VDC, 0.5s		

Signal "1"	15~30V			
Signal "0"	0~5V			
Isolation				
Optical (galvanic,	500V/AC last within 1	minuto		
field to logic)	500VAC, last within 1	minute		
Isolation points for	Λ		8	
each Group	4		0	
Input delay (max.)	4.5ms			
Leakage current	1mA AC			
(max.)				
Maximum Cable ler	ngth			
Unshielded	300m			
Shielded	500m			
Output on simultaneously				
40°C	8	16	32	
50°C	8	16	32	

SM221 digital input module (CTH2 221-1BF32)

SM221 digital input module (CTH2 221-1BH32)

SM221 digital input module (CTH2 221-1BL32)

4.3.2 Digital Output Modules Specifications

Transistor Output

Table 4-3-3 Digital Output Modules Specifications

Features	8 output, 24VDC	16 output, 24VDC	32 output, 24VDC		
Order No.	CTH2 222-1BF32	CTH2 222-1BH32	CTH2 222-1BL32		
Dimension(W×H×D)	46 × 96 × 62mm	71.3 × 96 × 62mm	138 × 96 × 62mm		
Power supply cons	umption				
Power	2W	3W			
+5VDC current	57mA	79mA	174mA		
Output features					
Counts	8	16	32		
Туре	Solid MOSFET				
Output voltage					
Rated voltage	24VDC				
Max. Permit Voltage	20.4~28.8VDC				
Surge	Minimum 20VDC	Minimum 20VDC			
Signal "1"	Maximum 0.1VDC(10	Maximum 0.1VDC(10KΩ load)			
Output current					
Signal "1"	0.5A				
Output groups	1	2	4		
Output counts for	8				
each group	0	r			
Output on	8	16	32		
simultaneously	0		52		
Maximum current	4A				
each group		4A			
Lamp load (max.)	5W				
On state resistance	0.30				
(contact)					
Leakage current	10µA				
(max.)					
Surge current	8A, 100ms				
(max.)					
Isolation					

Optical (galvanic, field to logic)	500VAC, last within 1 minute	
Isolation groups	8 points	
Output delay(RL =	50Ω)	
Off-on	Maximum 50µs	
On-off	Maximum 200µs	
Maximum Cable length		
Unshielded	150m	
Shielded	500m	

SM222 transistor output modules (CTH2 222-1BF32)

SM222 transistor output modules (CTH2 222-1BH32)

SM222 transistor output modules (CTH2 222-1BL32)

Relay output

Table 4-3-4 Digital output modules specifications

5 1	•	
Features	8 outputs, relay	16 outputs, relay
Order No.	CTH2 222-1HF32	CTH2 222-1HH32
Dimension(W×H×D)	46 × 96 × 62mm	71.3 × 96 × 62mm
Power supply consumpti	on	
Power	2W	3W
+5VDC current	68mA	115mA
Output features		
Counts	8	16
Туре	Relay-dry contact	
Rated output voltage	DC: 5~30V, AC: 5~250V	
Output current		
Signal "1"	2A	
Output groups	2	4
Output counts for each	1	
group	7	
Output on simultaneously	8	16
Maximum current each	84	
group		
Lamp load (max.)	5W	
On state resistance	0.20	
(contact)	0.232	
Leakage current (max.)	7A, with contact closing	
Surge current (max.)	Additional provide	
Isolation		
Counts	4	
Coil and logic current	No	
Coil and contact	1500VAC, last 1 minute	
Resistance (Coil and	Minimum 100MO	
contact)		
Relay features	Γ	
On/off delay	15ms	
On/off frequency(max)	1Hz	
On/off time(no-load)	30,000,000	
Contact life(rated load)	300,000	
Maximum Cable length		
Unshielded	150m	
Shielded	500m	

Wiring diagram

SM222 relay output module(CTH2 222-1HF32)

SM222 relay output module (CTH2 222-1HH32)

	N I LL		ļ	ļ	ļ	N	.™ +	ļ	þ	ļ	
\bigcirc	\bigcirc										
Ļ	•	1L	0	1	2	3	2L	4	5	6	7
									SM2	222 R	ELAY
									CTH2	2 222-	1HH32
M	L+	3L	0	1	2	3	4L	4	CTH2 5	2 222- ⁻ 6	1HH32 7
	L+	3L	0	1	2	3	4L	4	CTH2 5	6	1HH32 7

4.3.3 Digital Input/Output Module Specifications

Transistor Output

Table 4-3-5 Digital I/O Module Specifications

Features	4 DI/DO, 24VDC	8 DI/DO, 24VDC	16 DI/DO, 24VDC			
Order No.	CTH2 223-1BF32	CTH2 223-1BH32	CTH2 223-1BL32			
Dimension						
Size (W×H×D)	46 × 96 × 62mm	71.3 × 96 × 62mm	138 × 96 × 62mm			
Power supply						
Power loss	2W	3W				
+5VDC Consumption	57mA	73mA	115mA			
Input						
Counts	4	8	16			
Туре	drain/source					
Input Voltage						
Rated Voltage	24VDC					
Max. rated voltage	30VDC					
Surge	35VDC, 0.5s					
Logic "1"	15~30V					
Logic "0"	0~5V					
Isolation						
Optical (galvanic,	500VAC last within 1	I minute				

field to logic)							
Isolation Groups	4 points	8 points					
Input delay (max.)	4.5ms						
Leakage current	1mA AC						
(max.)							
Output on simultane	eously						
40°C	4	8	16				
50℃	4	8	16				
Output							
Counts	4	8	16				
Туре	Solid MOSFET						
Output Voltage							
Rated load Voltage	24VDC						
Range	20.4~28.8VDC						
Logic "1"	Min. 20VDC						
Logic "0"	Max. 0.1VDC (at 10	KΩ load)					
Output Current							
Rated current per	0.54						
point (max.)	0.5A						
Outputs per	Δ	0					
common	4	0					
Output on	1	8	16				
simultaneously	7	0	10				
Rated current per	24	ΛΔ					
common (max.)	20						
Lamp load (max.)	5W						
On state resistance	0.30						
(contact)	0.012						
Leakage current	10mA						
(max.)							
Surge current (max.)	8A, 100ms						
Isolation	Optical (galvanic, fiel	ld to logic), 500VAC for	1 minute				
Isolation groups	4		4/4/8				
Output Delay (RL =	50Ω)						
Off to On	Max 50ms						
On to Off	Max 200ms						
Cable length (max.)							
Unshielded	150m						
Shielded	500m		500m				

Caution

24VDC digital expansion modules support short, overcurrent and overvoltage protection.

SM223 digital I/O module(CTH2 223-1BF32)

SM223 digital I/O module (CTH2 223-1BH32)

	+T	þ	þ	þ	þ				þ	0	
\bigcirc											
1M	1L+	0	1	2	3	٠	٠	4	5	6	7
									SM	223	DC/DC
									CTH2	223-	1BH32
Ļ	٠	1M	0	1	2	3	2M	4	5 5	223- 6	1BH32 7
÷	•		0	1	2	3	2M	4	5	6 0	1BH32 7

SM223 digital I/O module (CTH2 223-1BL32)

Relay Output

Table 4-3-6 Digital I/O modules Specifications

Footuroo	4DIx24VDC	8DIx24VDC	16DI×24VDC	
realures	4DO×Relay	8DO×Relay	16DO×Relay	
Order No.	CTH2 223-1HF32	CTH2 223-1PH32	CTH2 223-1PL32	
Dimension				
Size(W×H×D)	46 × 96 × 62mm	71.3 × 96 × 62mm	138 × 96 × 62mm	
Power Supply				
Power Loss	2W	3W	6W	

+5VDC current	58mA	89mA	150mA				
L+ current	output 9mA per point when switch on						
L+ Voltage	20.4-28.8VDC						
Input							
Counts	4	8	16				
Туре	Drain/Source						
Input voltage							
Range	24VDC						
Max. Permitted	201/00						
voltage	30000						
Surge voltage	35VDC, 0.5s						
Logic "1"	15~30V						
Logic "0"	0~5V						
Isolation							
Optical (galvanic,	500VAC for 1 minute						
field to logic)							
Isolation Groups	4 point		8 point				
Input delay (max.)	4.5ms						
Leakage current	1mA AC						
(max.)							
Output on simultar	neously						
40°C	4	8	16				
50℃	4	8	16				
Output							
No.	4	8	16				
Туре	Relay-dry contact						
Output voltage	DC: 5~30V, AC: 5~2	50V					
Output Current							
Signal "1"	2A						
Rated current per							
common (max.)	8A						
Light load	DC: 30W, AC: 200W						
Contact resistance	0.2Ω						
Surge current							
(max)	7A, with contact closi	ng					
Short-circuit							
protection	Additional provide						
Relay features							
Switching delay	45						
(max.)	15ms						
Switching	14-						
frequency (max.)							
Lifetime	30,000,000						
mechanical cycles	30,000,000						

Lifetime contacts	300,000
Cable length (max)	
Unshielded	300m
Shielded	500m

SM223 digital I/O modules (CTH2 223-1HF32)

SM223 digital I/O modules (CTH2 223-1PH32)

SM223 digital I/O modules (CTH2 223-1PL32)

4.4 Analog Expansion Modules Specification

Table 4-4-1 Analog expansion modules order info.

Expansion modules	Order No.
SM231 analog input module, 4 inputs, 0~20mA current or \pm 5V,	
$\pm 2.5 \text{V},$ 0~0V, 0~5V voltage input, isolated 12 bits precision	
SM231 high precision analog input module, 8 inputs, voltage	
input, opto-isolator, 16 bits precision	CTH2 231-0HF32
SM231 high precision analog input module, 8 inputs, current	
input, opto-isolator, 16 bits precision	GTH2 231-THF32
SM231 analog voltage input module, 8 inputs, \pm 2.5V, 0~10V,	
0~5V voltage input, two optional channels with 0~20mA current	CTH2 231-5HF32
input, isolated 12 bits precision	
SM232 analog output module, 2 outputs, $\pm10V$ voltage or	
0~20mA current output, isolated voltage 12 or current 11 bits	CTH2 232-0HB32
precision	
SM232 analog output module, 4 outputs, $\pm10V$ voltage or	
0~20mA current output, isolated voltage 12 or current 11 bits	CTH2 232-0HD32
precision	
SM235 analog I/O module, 4 voltage or current inputs/1 voltage	
or current output, isolated voltage 12 or current 11 bits precision	01112 200-UND02

4.4.1 Analog Input Module Specification

Table 4-4-2 SM231-0HC specifications

Features	
Dimension (W×H×D)	71.3x96x62mm
LED	24V power, ON: Normal, OFF: Faulted
Power Supply	
+5VDC Consumption	87mA
L+	17mA
L+ Coil Voltage	20.4~28.8VDC
Power consumption	2W
Analog Input	
Counts	4
Isolation (field to logic)	500VAC for 1 minute Opto-couplers isolation
Input type	Differential
Input ranges	
Voltage (unipolar)	0~10V, 0~5V
Voltage (bipolar)	±5V, ±2.5V
Current	0~20mA
Data word format	
Unipolar	0~32000
Bipolar	-32000~32000
Resolution, full-scale	
Voltage (unipolar)	2.5mV(0~10V range); 1.25mV(0~5V range)

Voltage (bipolar)	2.5mV(±5V range); 1.25mV(±2.5V range)
Current	5µA(0~20mA range)
Analog to digital	< 300us
conversion time	< 300µs
Analog input step	1 5ms
response	1.5015
Common mode	40dB DC 60Hz
rejection	4000, DC 00112
Common mode voltage	Signal voltage plus common mode voltage
Common mode voltage	must be \leq 12V
DC Input impedance	≥10MΩ
Maximum input voltage	30V
Maximum input current	30mA

Wiring Diagrams

SM231 AI Module (CTH2 231-0HC32)

Calibration and range

[Calibration and the position of range switch]

[Input calibration]

Because the calibration adjustment affects the OPAMP behind the analog multiplexer, it affects all user input channels. In addition, because the component parameters of the input channels in front of the multiplexer may differ, there is a slight difference of the same input signal on different channels even after calibration.

The input has been filtered in the module, so the measurements is stable. Start the analog input filter for all input of the module for better performance parameters. When calculating the average

value, select the sampling times above 64.

Calibration steps:

1) Cut off external power of modules, configure DIP switch to select needed range.

2) Connect CPU with module power, wait for 15min above.

3) Use a transmitter, a voltage input source or a current input source to add the zero signal to module input.

4) Read measurement of the input in CPU.

5) Adjust OFFSET potentiometer till the reading is zero, finish zero set calibration.

6) Input a full scale signal to read the measurement in CPU.

7) Adjust GAIN potentiometer till the reading is 32000.

8) Repeat 3~7 when necessary.

[Select range]

The following table shows how to set the range of SM231 4AI with DIP switch. Use 1, 2 and 3 to select the analogy input range which can be set to the same.

Attention: the unused DIP switch SW4 ~ SW6 must be set to OFF.

	Unipolar				
SW1	SW2	SW3	Full-range	Resolution	
ON	OFF	ON	0 - 10V	2.5mV	
ON	ON	OFF	0 - 5V	1.25mV	
ON	ON	OFF	0 - 20mA	5µA	
Bipolar				_	
SW1	SW2	SW3	Full-range	Resolution	
OFF	OFF	ON	±5V	2.5mV	
OFF	ON	OFF	±2.5V	1.25mV	

Table 4-4-3 DIP switch configuration of SM231-0HC

Input Data Format

Notice

The 12 bits of the analog-to-digital converter (ADC) readings are left-justified in the data word format. The MSB is the sign bit: zero indicates a positive data word value.

In the unipolar format, the three trailing zeroes cause the data word to change by a count of eight for each one-count change in the ADC value.

In the bipolar format, the four trailing zeroes cause the data word to change by a count of sixteen for each one count change in the ADC value.

Table 4-4-4 SM231-0HF	analog input	module specifications
	analog input	

Features		
Dimension (W×H×D)	71.3 × 96 × 62mm	
LED	24V power, ON: Normal, OFF: Faulted	
Power		
+5VDC Consumption	87mA	
L+	50mA	
L+ Coil Voltage	20.4~28.8VDC	
Power consumption	2.5W	
Analog Input		
Counts	8	
Isolation (field to logic)	Opto-couplers isolation, 500V AC for 1 minute	
Туре	Differential	
Signal range		
Voltage (Unipolar)	0~10V, 0~5V	
Voltage (Bipolar)	±2.5V (channel 0~7)	
Current	0~20mA (channel 6~7)	
Data word format		
Unipolar	0~32000	
Bipolar	-32000~32000	
Resolution, full-scale		
Voltage (Unipolar)	2.5mV (0~10V range); 1.25mV(0~5V range)	
Voltage (Bipolar)	2.5mV(±5V range); 1.25mV(±2.5V range)	
Analog to digital	Approx 10ms	
conversion time		
Conversion time for 8	100ms	
channels	100113	
Common mode rejection	40dB, DC - 60Hz	
Common mode voltage	-12V \leq Signal voltage plus common mode voltage $\leq\!$ +12V	
DC Input impedance	Voltage $\geq 2M\Omega$	
	Current 250Ω	
Maximum input voltage	30VDC	
Maximum input current	32mA	
A/D Converter resolution	Unipolar 12bits, Bipolar 11bits+sign bit	
Measure principle	successive approximation	
Measuring error	0.5% (max)	
Simulate input addressing	AIW	

Range selection and software configuration

[Range selection switch position]

[Range selection]

The following table shows how to set the range of SM231 8AI with DIP switch. Use 1, 2 and 3 to select the analogy input range which can be set to the same.

Attention: The unused DIP switch SW4 ~ SW6 must be set to OFF.

	Unipolar			-	
SW1	SW2	SW3	Full-range	Resolution	
ON	OFF	ON	0-10V	300µV	
ON	ON	OFF	0 - 5V	150µV	
Bipolar					
	Bipolar				
SW1	Bipolar SW2	SW3	Full-range	Resolution	
SW1 OFF	Bipolar SW2 OFF	SW3 ON	Full-range ± 5V	Resolution 150µ∨	

Table 4-4-5 DIP switch configuration of SM231-0HF

[Software Configuration]

For SM231 8AI×16 bits, reading in VW instead of AIW. The relative location of the module is different, so is the corresponding address. Calculation formula:

 $x(VWx) = Slot no. \times 64 + Input channel \times 2$

The slot number of the address quick reference table corresponds to the installation location of the module. The first expansion module close to the CPU has the slot number of 0, the second expansion module has the slot number of 1, and so on. There are 8 input channels, from A to G, and the corresponding number is 0 to 7.

VWxx	channel0	channel 1	channel 2	channel 3	channel 4	channel 5	channel 6	channel 7
Slot 0	VW0	VW2	VW4	VW6	VW8	VW10	VW12	VW14
Slot 1	VW64	VW66	VW68	VW70	VW72	VW74	VW76	VW78
Slot 2	VW128	VW130	VW132	VW134	VW136	VW138	VW140	VW142
Slot 3	VW192	VW194	VW196	VW198	VW200	VW202	VW204	VW206
Slot 4	VW256	VW258	VW260	VW262	VW264	VW266	VW268	VW270
Slot 5	VW320	VW322	VW324	VW326	VW328	VW330	VW332	VW334
Slot 6	VW384	VW386	VW388	VW390	VW392	VW394	VW396	VW398

Table 4-4-6 Quick reference of address based on formula above:

Notice

Since the address assigned by COTRUST's TD2X text display panel and SIEMENS 'TD200 text display panel is fixed at VW0, if you need to use both TD2X or TD200 and SM231 8AI modules in your system, the SM231 8AI module cannot be installed in the first position (Slot 0), otherwise it will not work properly.

Table 4-4-7 SM231-1HF	analog input	module	specifications
-----------------------	--------------	--------	----------------

Features	
Dimension(W×H×D)	120.5×80×62 mm
Weight	210 g
Insert I/O terminal	No
Power consumption	
Bus(5V DC)	87mA
L+	30MA
L+ voltage range	20.4~28.8V DC
Power	1W
Analog input features	
Counts	8
Туре	Current
Range	0~20mA; 4~20mA
Data Word format	0~32000
Resolution	0.000625 mA (0~20mA); 0.0005 mA(4~20mA)
Measurement precision	0.1%
Input resistance	250 Ω
Update time	100ms(8 channels)
CMV	120V AC
CMR	90dB, 60Hz @ DC
Input filter attenuation	-3db @ 325 HZ
Diagnosis	
	+24VDC power indicator light, on: power supply normal
Diagnosis program	off: no power, all the channel data turn to 32766
	DIP switch wrong setting, all the channel data turn to 32767

Isolation	
Field to logic	500V AC
Field to 24VDC	500V AC
24VDC to logic	500V AC

Range selection and software configuration

[Range selection switch position]

[Range Selection]

The following table shows how to set the range of SM231 8AI with DIP switch. Use 1, 2 and 3 to select the analogy input range which can be set to the same.

Attention: The unused DIP switch SW4 ~ SW6 must be set to OFF.

Table 4-4-8 DIP switch configuration of SM231-1HF

Unipolar		Full rongo input	Becelution		
SW1	SW2	SW3	Full-range input	Resolution	
OFF		OFF	0-20mA	0.000625mA	
	OFF	ON	4-20mA	0.0005mA	

Software Configuration

For SM231 8AI \times 16 bits, reading in VW instead of AIW. The relative location of the module is different, so is the corresponding address. Calculation formula:

 $x(VWx) = Slot no. \times 64 + Input channel \times 2$

The slot number of the address quick reference table corresponds to the installation location of the module. The first expansion module close to the CPU has the slot number of 0, the second expansion module has the slot number of 1, and so on. There are 8 input channels, from A to G, and the corresponding number is 0 to 7.

VWxx	channel0	channel 1	channel 2	channel 3	channel 4	channel 5	channel 6	channel 7
Slot 0	VW0	VW2	VW4	VW6	VW8	VW10	VW12	VW14
Slot 1	VW64	VW66	VW68	VW70	VW72	VW74	VW76	VW78
Slot 2	VW128	VW130	VW132	VW134	VW136	VW138	VW140	VW142
Slot 3	VW192	VW194	VW196	VW198	VW200	VW202	VW204	VW206
Slot 4	VW256	VW258	VW260	VW262	VW264	VW266	VW268	VW270
Slot 5	VW320	VW322	VW324	VW326	VW328	VW330	VW332	VW334
Slot 6	VW384	VW386	VW388	VW390	VW392	VW394	VW396	VW398

Table 4-4-9 Quick reference of address based on formula above:

Table 4-4-10 SM231-5HF specifications

Features		
Dimension (W×H×D)	71.3 × 96 × 62mm	
LED	24V power, ON: normal, OFF: faulted	
Power		
+5VDC Consumption	87mA	
L+	50mA	
L+ Coil Voltage	20.4~28.8VDC	
Power consumption	2.5W	
Analog Input		
Counts	8	
Isolation (field to logic)	Opto-couplers isolation, 500V AC for 1 minute	
Туре	Differential	
Signal range		
Voltage (Unipolar)	0~10V, 0~5V	
Voltage (Bipolar)	±2.5V (channel 0~7)	
Current	0~20mA (channel 6~7)	
Data word format		
Unipolar	0~32000	
Bipolar	-32000~32000	
Resolution, full-scale		
Voltage (Unipolar)	2.5mV (0~10V range); 1.25mV(0~5V range)	
Voltage (Bipolar)	2.5mV(±5V range); 1.25mV(±2.5V range)	
Analog to digital	Approx 10mc	
conversion time		
Conversion time for 8	100ms	
channels		
Common mode rejection	40dB, DC - 60Hz	
Common mode voltage	-12V \leq Signal voltage plus common mode voltage \leq +12V	
DC Input impedance	Voltage ≥2MΩ	
	Current 250Ω	
Maximum input voltage	30VDC	
Maximum input current	32mA	

A/D Converter resolution	Unipolar 12bits, Bipolar 11bits+sign bit		
Measure principle	successive approximation		
Measuring error	0.5% (max)		
Simulate input addressing	AIW		

<Note> Short connect the unused terminal in the figure above, for F+ and F-.

Range selection and software configuration

[Range selection switch position]

[Range selection]

The following table shows how to set the range of SM231 8AI with DIP switch. Use 3, 4 and 5 to select the analogy input range, use 1 and 2 to select current input mode(ON means current input mode for channel 6, OFF means voltage mode), for switch 2, ON means current input mode for channel 7, OFF means voltage mode.

Attention: The unused DIP switch SW4 ~ SW6 must be set to OFF.

Unipolar			Eull rongo	Decelution	
SW3	SW4	SW5	Full-tallye	Resolution	
ON	OFF	ON	0-10V	2.5mV	
	ON ON	OFF	0-5V	1.25mV	
ON		UFF	0-20mA	5μΑ	
Bipolar				Pecolution	
SW3	SW4	SW5	Full-fallge	Resolution	
OFF	OFF	ON	±5V	2.5mV	
OFF	ON	OFF	±2.5V	1.25mV	

Table 4-4-11 DIP switch configuration of SM231-5HF

4.4.2 Analog Output Module Specification

Table 4-4-12 Analog output modules specifications

Modules	SM232: 2 AQ × 12 bits	SM232: 4 AQ × 12 bits
Order No.	CTH2 232-0HB32	CTH2 232-0HD32
Features		
Dimension (W×H×D)	46 × 96 × 62mm	71.3 × 96 × 62mm
LED	24V indicator, ON: Normal, OFF: Faulted	
Power consumption		
+5VDC current	87mA	
L+	61mA	112mA
L+ Coil Voltage	20.4~28.8VDC	
Power consumption	2W	
Analog Output		
Counts	2	4
Isolation (field to	Opto-couplers isolation, 500V AC for 1 minute	
logic)		
Output range		
Voltage	±10V	
Current	0~20mA	
Resolution		
Voltage	12 bits	
Current	11 bits	
Data Word Format		
Voltage	-32000~+32000	
Current	0~32000	
Measurement error	Typical: Full scale ±0.5%; Worst case: Full scale ±2%	
Stable time		
Voltage	100µs	
Current	2ms	
Maximum drive@24V user power		
Voltage	Minimum 5000Ω	
Current	Maximum 500Ω	

SM232 analog output modules (CTH2 232-0HB32)

SM232 analog output modules (CTH2 232-0HD32)

Output Data Format

	MSB 15 14		4	3		L	_SB 0
AQW XX	0	Data value 11 Bits	;	0	0	0	0
	MSB	Current output data	format	2		I	LSB
AQW XX	15	Data value 12 Bits	4	0	0	0	0
		Voltage output data	format				

Notice

The 12 bits of the digital-to-analog converter (DAC) readings are left-justified in the output data word format. The MSB is the sign bit: zero indicates a positive data word value. The four trailing zeroes are truncated before being loaded into the DAC registers. These bits have no effect on the output signal value.

4.4.3 Analog I/O Modules Specifications

Table 4-4-13 Analog I/O modules specifications

Features					
Dimension	71.2 × 06 × 62mm				
(W×H×D)	71.3 × 90 × 021111				
LED	24V power, ON: normal, OFF: faulted				
Power Supply					
+5VDC current	87mA				
L+	48mA				
L+ Coil Voltage	20.4~28.8VDC				
Power consumption	2W				
Analog Input					
Counts	4				
Isolation (field to	Opto couplers isolation 500V/AC for 1 minute				
logic)	Opto-couplers isolation, 500V AC for 1 minute				
Туре	Differential input				
Scale Range					
Voltage input	-101/ $-51/$ $-11/$ $-500m/$ $-100m/$ $-50m/$				
(Unipolar)	0-100, 0-30, 0-10, 0-300110, 0-100110, 0-30110				
Voltage input	$\pm 101/\pm 51/\pm 2.51/\pm 11/\pm 500m1/\pm 250m1/\pm 100m1/\pm 50m1/\pm 25m1/$				
(bipolar)	±100,±30,±2.50,±10,±300m0, ±230m0, ±100m0,±30m0,±23m0				

Current input	0~20mA						
Data word Format (F	Data word Format (Full-Scale)						
Unipolar	0~32000						
Bipolar	-32000~32000						
Input Resolution							
Voltage input	2.5m)/(0, 10)/(range): 1.25m)/(0, 5)/(range)						
(Unipolar)							
Voltage input	2.5m/(+5)/(range): 1.25m/(+2.5)/(range)						
(bipolar)							
Current input	5µA(0~20mA range)						
Analog to digital	< 300us						
conversion time							
Analog input step	1.5ms						
response							
Common mode	40dB. DC~60Hz						
rejection							
Common mode	Signal voltage plus common mode voltage must less than 12V						
voltage							
DC Input impedance	> 10MΩ						
Maximum input	30V						
voltage							
Maximum input	30mA						
current							
A/D converter	12 bits						
resolution							
Analog Output							
Counts	1						
Voltage output							
Current output	0~20mA						
Output resolution							
Voltage output							
Current output	11 bits						
	22000						
Voltage output	-32000~+32000						
	Typical: Full scale $\pm 0.5\%$, worst case: Full scale $\pm 2\%$						
Settling time							
Voltage output	100us						
	2ms						
Voltage output	Min 50000						
	May 5000						

Wiring diagram

SM235 analog hybrid I/O module (CTH2 235-0KD32)

Calibration, range and gain selection

【Calibration and DIP configuration】

[Input Calibration]

Because the calibration adjustment affects the OPAMP behind the analog multiplexer, it affects all user input channels. In addition, because the component parameters of the input channels in front of the multiplexer may differ, there is a slight difference of the same input signal on different channels even after calibration.

The input has been filtered in the module, so the measurements is stable. Start the analog input filter for all input of the module for better performance parameters. When calculating the average value, select the sampling times above 64.

Calibration steps:

1) Cut off external power of modules, configure DIP switch to select needed range.

2) Connect CPU with module power, wait for 15min above.

3) Use a transmitter, a voltage input source or a current input source to add the zero signal to module input.

- 4) Read measurement of the input in CPU.
- 5) Adjust OFFSET potentiometer till the reading is zero, finish zero set calibration.
- 6) Input a full scale signal to read the measurement in CPU.
- 7) Adjust GAIN potentiometer till the reading is 32000.
- 8) Repeat 3~7 when necessary.

[Range and gain selection]

Table 4-4-14 shows how to configure the SM235 module using DIP switches. Use SW1 and SW6 to select the analog input range and resolution. Set all inputs the same analog input range and format. Table 4-4-16 shows how to select unipolar/bipolar (SW6), GAIN (SW4 and SW5) and attenuation (SW1, SW2 and SW3). ON is closed, OFF is open.

		Eull rongo	Pasalution				
SW1	SW2	SW3	SW4	SW5	SW6	Full-range	Resolution
ON	OFF	OFF	ON	OFF	ON	0 - 50mV	12.5µV
OFF	ON	OFF	ON	OFF	ON	0 - 100mV	25µV
ON	OFF	OFF	OFF	ON	ON	0 - 500mV	125µV
OFF	ON	OFF	OFF	ON	ON	0 - 1V	250µV
ON	OFF	OFF	OFF	OFF	ON	0 - 5V	1.25µV
ON	OFF	OFF	OFF	OFF	ON	0 - 20mA	5µA
OFF	ON	OFF	OFF	OFF	ON	0 - 10V	2.5mV

Table 4-4-14 SM235-0KD DIP switch configuration(unipolar)

Table 4-4-15 SM235-0KD DIP switch configuration(bipolar)

		Full-range	Posolution				
SW1	SW2	SW3	SW4	SW5	SW6	Full-ralige	Resolution
ON	OFF	OFF	ON	OFF	OFF	±25mV	12.5µV
OFF	ON	OFF	ON	OFF	OFF	±50mV	25µV
OFF	OFF	ON	ON	OFF	OFF	±100mV	50µV
ON	OFF	OFF	OFF	ON	OFF	±250mV	125µV
OFF	ON	OFF	OFF	ON	OFF	±500mV	250µV
OFF	OFF	ON	OFF	ON	OFF	±1V	500µV
ON	OFF	OFF	OFF	OFF	OFF	±2.5V	1.25mV
OFF	ON	OFF	OFF	OFF	OFF	±5V	2.5mV
OFF	OFF	ON	OFF	OFF	OFF	±10V	5mV

SM235 switch				Uninglar/binglar	Cain	Attenuetion		
SW1	SW2	SW3	SW4	SW5	SW6	Unipolar/Dipolar	Gain	Attenuation
					ON	Unipolar		
					OFF	Bipolar		
			OFF	OFF			x1	
			OFF	ON			x10	
			ON	OFF			x100	
			ON	ON				
ON	OFF	OFF						0.8
OFF	ON	OFF						0.4
OFF	OFF	ON						0.2

Input Data Format

Notice

The 12 bits of the analog-to-digital converter (ADC) readings are left-justified in the data word format. The MSB is the sign bit: zero indicates a positive data word value.

In the unipolar format, the three trailing zeros cause the data word to change by a count of eight for each one-count change in the ADC value.

In the bipolar format, the four trailing zeros cause the data word to change by a count of sixteen for each one count change in the ADC value.

Output Data Format

Notice

The 12 bits reading of the digital-to-analog converter (DAC) are left-justified in the output data word format. The MSB is the sign bit: zero indicates a positive data word value. The four trailing zeroes are truncated before being loaded into the DAC registers. These bits have no effect on the output signal value.

4.5 Thermocouple and RTD Expansion Module Specifications

Table 4-5-1 Hybrid temperature input modules order No.

Modules	Order No.					
SM231 thermal resistance temperature input module, 2 RTD,	CTH2 231-7DB32					
isolated 16 bits precision	01112 231-77 D32					
SM231 thermal resistance temperature input module, 4 RTD,						
isolated 16 bits precision	CTH2 231-7PC32					
SM231 thermocouple temperature input module, 4 TC,						
J/K/R/S/T/E/N, isolated 16 bits precision	CTH2 231-7PD32					
SM231 thermocouple temperature input module, 8 TC,						
J/K/R/S/T/E/N, isolated 16 bits precision						

SM231 hybrid temperature input module, 2NTC/PT100, 2 points	
0~20mA current or \pm 5V, \pm 10V, 0~10V, 0~5V voltage input,	CTH2 231-7ND32
isolated 16 bits precision	
SM231 thermal resistance temperature input module, 8NTC/PT100,	
isolated 16 bits precision	CTH2 231-7NF32

4.5.1 RTD Module Specifications

Modules	SM231: 2AI×RTD	SM231: 4AI×RTD				
Order No.	CTH2 231-7PB32	CTH2 231-7PC32				
Features						
Dimension (W×H×D)) 71.3 × 96 × 62mm					
	24VDC Power indicator, ON=No Fault, OFF=No 24VDC Power;					
LED	SF indicator, ON= Module fault; Flash = Override or open wire					
	, OFF=No Fault					
Power supply						
+5VDC current	87mA					
L+	34mA	37mA				
L+ Coil Voltage	20.4~28.8VDC					
Power	1.7W					
Input						
Туре	Module ground referenced RTD					
Counts	2	4				
	RTD types (select one per module): Pt-100 Ω , 200 Ω , 500 Ω ,					
	1000Ω(α=3850ppm, 3920ppm, 3850.55ppm, 3916ppm, 3902ppm)					
Input rongo	Pt-10000Ω(α=3850ppm)					
inputrange	Cu-9.035Ω(α=4720ppm)					
	Νi-100Ω, 120Ω, 1000Ω(α=6720ppm, 6178ppm)					
	R-150Ω, 300Ω, 600Ω					
	Pt-100Ω, 200Ω, 500Ω, 1000Ω: -200°C~850°C					
	Pt-10000Ω: -200°C~600°C					
PTD measuring	NI-0.00672: -80°C~260°C					
rango	NI-0.006178: -60°C~300°C					
range	Cu-0.004270: -200°C~260°C					
	<note> Error when exceeding this range, refer Table 4-30 for</note>					
	Diagnostic details.					
Isolation						
Field to logic	500VAC					
Field to 24 VDC	500VAC					
24 VDC to logic	500VAC					
Common mode input						
range (input channel	۶I O					
to input channel)						

Common mode				
rejection	>120dB@120VAC			
Input resolution				
Temperature	0.1°C/0.1°F			
Voltage	15bits plus sign			
Measuring principle	Σ-Δ			
Module update time:	125mc	825mc		
All channels	4251115	023115		
Wire length to sensor	Max 100m			
Wire loop resistance	20Ω, 2.7Ω for Cu			
Noise suppression	85dB@ 50Hz/60Hz/400Hz			
Data word format				
Input impedance	>10MΩ			
Maximum input				
voltage				
Resolution	15bits plus sign			
Input Filter	248@2164-			
attenuation	-30B@21KHZ			
Basic error	0.1% FS (resistance)			
Repeatability	0.05% FS			
AI Addressing method	AIW Addressing			

Wiring diagram

SM231 thermal resistance input module 2AI x RTD (CTH2 231-7PB32)

SM231 thermal resistance input module 4AI x RTD (CTH2 231-7PC32)

Table 4-5-3 RTD	module	diagnostic	messages
	modulo	alugnostio	messages

Туре	Channel Data	SF LED	24V LED	Range status bit	24V power failure
No power module	32766	OFF	OFF	0	1
Disconnection	32767(Upscale) -32768(Downscale)	Flash	ON	1	0
Out of temperature range	32767(Upscale) -32768(Downscale)	Flash	ON	1	0

<Note> For relevant error code of each Module, please check the SMB8~21 according to modules sequence.

SMB8	Module 1 flag register
SMB9	Module 1 error register
SMB10	Module 2 flag register
SMB11	Module 2 error register
SMB12	Module 3 flag register
SMB13	Module 3 error register
SMB14	Module 4 flag register
SMB15	Module 4 error register
SMB16	Module 5 flag register
SMB17	Module 5 error register
SMB18	Module 6 flag register
SMB19	Module 6 error register
SMB20	Module 7 flag register
SMB21	Module 7 error register

Table 4-5-4 SMB8~21 Diagnose Information

Wiring between RTD and sensor

Notes: A refers to sensor; a refers to source

You can either directly connect the thermal resistance sensor to the SM231 module of CTH200 or use expansion wiring. The shielded wire, connect it to the ground point of PIN1-4 on signal connector if you use, can reach the best noise resistance.

For unused channel, wire it with a resistor in place of the RTD to prevent open wire detection from causing the SF LED to blink. The resistor must be the nominal value of the RTD.

Connect power supply to the PIN 1 and 2 of connector, and PIN 3 to its nearby shell. There are 3

methods for connecting RTD module to the sensor. Among that, the RTD 4-Wire has the best accuracy while the RTD 2-Wire has the lowest, therefore it's recommended to only using RTD 2-Wire in application which not emphasis accuracy.

[RTD module Configuration]

SM231 module allows CTH200 series PLC to connect with multiple thermal resistance sensor. Use DIP switches to select RTD type, wiring method, temperature scale and burnout direction. The DIP switches are located on the bottom of the module as shown in Figure bellow. For the DIP switch settings to take effect, you need to power cycle the PLC and/or the user 24V power supply.

Table 4-5-5	SM231	RTD	DIP	switch	configu	ration
10010 1 0 0	0111201		D	0	coringa	

RTD Type	SW1	SW2	SW3	SW4	SW5
100 Pt 0.003850(Default)	0	0	0	0	0
200Ω Pt 0.003850	0	0	0	0	1
500Ω Pt 0.003850	0	0	0	1	0
1000Ω Pt 0.003850	0	0	0	1	1
100Ω Pt 0.003920	0	0	1	0	0
200Ω Pt 0.003920	0	0	1	0	1
500Ω Pt 0.003920	0	0	1	1	0
1000Ω Pt 0.003920	0	0	1	1	1
100Ω Pt 0.00385055	0	1	0	0	0
200Ω Pt 0.00385055	0	1	0	0	1
500Ω Pt 0.00385055	0	1	0	1	0
1000Ω Pt 0.00385055	0	1	0	1	1
100Ω Pt 0.003916	0	1	1	0	0
200Ω Pt 0.003916	0	1	1	0	1
500Ω Pt 0.003916	0	1	1	1	0
1000Ω Pt 0.003916	0	1	1	1	1
100Ω Pt 0.00302	1	0	0	0	0
200Ω Pt 0.003902	1	0	0	0	1
500Ω Pt 0.003902	1	0	0	1	0
1000Ω Pt 0.003902	1	0	0	1	1
Reserved	1	0	1	0	0
100Ω Ni 0.00672	1	0	1	0	1
120Ω Ni 0.00672	1	0	1	1	0
1000Ω Ni 0.00672	1	0	1	1	1
100Ω Ni 0.006178	1	1	0	0	0
120Ω Ni 0.006178	1	1	0	0	1
100 <mark>0Ω Ni</mark> 0.006178	1	1	0	1	0

10000Ω Pt 0.003850	1	1	0	1	1
10Ω Cu 0.004270	1	1	1	0	0
150Ω FS Resistance	1	1	1	0	1
300Ω FS Resistance	1	1	1	1	0
600Ω FS Resistance	1	1	1	1	

Table 4-5-6 DIP switch settings

SW6	Calibration	SW7	Scale Unit	SW8	Wiring method	
0	Upscale (+3276.7	0	Colsius (°C)	0	3-wiro	
0	degrees)	0	3-wire			
1	Downscale (-3276.8	1	Eabranhait (°E)	1	2 wire or 4 wire	
1	degrees)	I	Famennen (F)	I	2-wire of 4-wire	

4.5.2 Thermocouple Module Specifications

Table 4-5-7 SM23	I Thermocouple	Module S	pecifications
------------------	----------------	----------	---------------

Modules	SM231: 4AI×TC	SM231: 8AI×TC			
Features					
Dimension (W×H×D)	71.3 × 96 × 62mm				
	24VDC indicator: ON=No fault	, OFF=no 24VDC power			
LED	SF Indicator: ON=Module fault	t, Flash=Outrange or ,			
	OFF=No fault				
Power					
+5VDC current	87mA				
L+	30mA				
L+ coil voltage range	20.4~28.8VDC				
Power	1.7W				
Input					
Input type	Float TC				
Counts	4	8			
	TC type: S, T, R, E, N, K, J				
	Voltage range: +/-80mV				
Input range	<note> For temperature measure</note>	suring range, please refer to			
	the TC measuring range in the	e end of this section. For error			
	details, please refer to the Tab	ole 4-5-8 and 4-5-9.			
Isolation					
Field to Logic	500VAC				
Field to 24VDC	500VAC				
24V to Logic	500VAC				
Common mode input					
range (input channel to	120VAC				
input channel)					
Common mode rejection	>120dB@120VAC				
Sampling features					
Temperature resolution	0.1°C/0.1°F				
Voltage resolution	15 bits + sign bit				

Transfer principle	Σ-Δ			
Module update time: All channels	425ms 825ms			
Wire length to sensor	Max. 100m			
Conductor loop resistance	Max. 100Ω			
Suppression of interference	85dB@ 50Hz/60Hz/400Hz			
Data word format	Voltage: -27648~+27648			
Input impedance	>1MΩ			
Max. Input voltage	30VDC			
Input Filter attenuation	-3dB@ 21kHz			
Basic error	0.1% FS(voltage)			
Repeatability	0.05% FS			
cold junction error	±1.5°C			
Addressing method	AIW Addressing	VW Addressing		

Wiring diagram

SM231 thermocouple input module (CTH2 231-7PD32) x 4TC

SM231 thermocouple input module (CTH2 231-7PF32) x 8TC

Table 4-5-8 TC module Diagnose

Error type	Channel data	SELED	Range	24V Power
Enditype	Channel data		status bit	fault

No power	32766	OFF	OFF	0	1
Open Wire	32767 (Upscale)	Flash	ON	1	0
Temperature	32767 (Upscale)	Fleek	01		0
Outrange	-32768 (Downscale)	Flash	ON	1	0

<Note> For relevant error code of each Module, please check the SMB8~21 according the modules sequence.

Table 4-5-9 SMB8~21 Diagnose information

SMB8	Module 1 flag register
SMB9	Module 1 error register
SMB10	Module 2 flag register
SMB11	Module 2 error register
SMB12	Module 3 flag register
SMB13	Module 3 error register
SMB14	Module 4 flag register
SMB15	Module 4 error register
SMB16	Module 5 flag register
SMB17	Module 5 error register
SMB18	Module 6 flag register
SMB19	Module 6 error register
SMB20	Module 7 flag register
SMB21	Module 7 error register

TC measuring range

Data byte	(1.0)						Statistics -		
(1 digit=0.	1°C)	Type J	Туре К	Туре Т	Type E	Type R,S	类型N	±80mV	
Dec	Hex								
32767	7FFF	>1200.0°C	>1372.0°C	>400.0°C	>1000.0°C	>1768.0°C	>1300.0°C	>94.071mV	OF
	I							07.074.14	T
32511	7EFF							97.071mV	
:	:								OR
27649	6C01							80.0029mV	
27648	6C00					1		80mV	
:	:								
17680	4510		Ť			1768.0°C			
:	:			_					
13720	3598		1372.0°C				1		
:	:		Overrange						
13000	32C8	1	1300.0°C				1300 0°C		NR
:	:						1000.0 0		
12000	2EE0	1200.0°C	1						
:	:	1200.0 0			t				
10000	2710			↑	1000 0°C				
					1000.0 C				
				400.0%	1	100.000			
4000	. UFAU			-400.0 C		400.0°C	1		
•									
1	0001	0.1°C	0.1°C	0.1°C	0.1°C	0.1°C	0.1°C	0.0029mV	
0	0000	0.0°C	0.0°C	0.0°C	0.0°C	0.0°C	0.0°C	0.0mV	
-1	FFFF	-0.1°C	-0.1°C	-0.1°C	-0.1°C	-0.1°C	-0.1°C	-0.0029mV	
:	:					Underrange			
-500	FE0C					-50.0°C			
-1500	FA24	-150.0°C				Ļ			
:	:								
-2000	F830	Underrange	-200.0°C						
:	:	Underrange]					
-2100	F7CC	-210.0°C							
:	:		Underrange						
-2550	F60A			-255.0°C	-255.0°C				
:	:			Underrange	Underrange				
-2700	F574	Ļ	-270.0°C	-270.0°C	-270.0°C		-270.0°C		
:	:								
-27648	9400		Ļ	ţ	Ļ			-80mV	
-27649	93FF							-80 0029mV	
:	:							00.0020111	
-32512	8100							-94.071 mV	
#	#							<u> </u>	
-32768	8000	<-210 0°C	<-270 0°C	<-270.0°C	<-270 0°C	<-50 0°C	<-270 0°C	$\frac{1}{5}$	LIE
Accuracy	over full span	S0.1%	S0.3%	S0.6%	\$0.1%	S0.6%	S0.1%	S0 1%	01
Accuracy	(normal range	S1.5°C	S1.7°C	S1 /°C	S1 3°C	\$3.7°C	S1.6°C	S0.10°C	
without co	Id junction)	31.5 0	31.7 0	31.4 0	31.5 0	01.502	31.0 C	30.10 0	
Cold junc	tion error	S1.5°C	S1.5°C	<u>S1.5°C</u>	<u> S1.5°C</u>	<u>51.5°C</u>	S1.5°C	NA	
^OF = Ove	ertiow; OR = O	verrange; NR	= Normal range	e; UR = Under	ange; UF = Un	derflow			
Lindicates t	nat an anaiog va hat all anaiog va	iues greater than lues less than thi	uiis and below th s and greater that	e open wire thres the open wire th	reshold report the ov	eniow data value underflow data v	, ა∠≀ง≀ (UX/FFF) alue. ~32768 (∩v	8000).	

DIP switch and software configuration

• DIP switch configuration

SM231 TC module enjoys 7 types thermocouple: J, K, E, N, S, T and R. It has a convenient isolated interface and allow to connect micro analog signal (range ±80mV), All TC on module must be the same type and it's better to use isolated TC sensor.

Users can use DIP switch to configure TC type, Open Wire detection, Scale Unit, Cold junction compensation and open-circuit fault direction as shown in the following figures.

For SM231 4TC module, SW1~SW3 are used for selecting TC type, SW4 remained OFF (unused), SW5 used for Open Wire Detect Direction, SW6 for Open Wire Detect Enable, SW7 for Scale Unit, SW8 for Cold junction.

For SM231 8TC module, SW1~SW3 are used for selecting TC type, SW4 for Open Wire Detect Direction, SW5 for Scale Unit, SW6 for Cold junction compensation. There is no need for user to set Open Wire Detect Enable for it has been fixed yes.

The DIP configuration can be effective by cut-off and recycle the PLC/user's power supply.

TC type	SW1	SW2	SW3
J(default)	0	0	0
K	0	0	1
Т	0	1	0
E	0	1	1
R	1	0	0
S	1	0	1
N	1	1	0
+/- 80mV	1	1	1

Table 4-5-10 Selecting TC type:

Itomo		SM231 4TC		SM231 8TC
nems	Switch	Setting	Switch	Setting
		0: Upscale (+3276.7		0: Upscale (+3276.7
Open Wire Detect	SW/F	Degrees)	SW/4	Degrees)
Direction	3005	1: Downscale (-3276.8	3004	1: Downscale (-3276.8
		Degrees)		Degrees)
Open Wire Detect	SWG	0: Voo. 1: No		Fixed at Enable
Enable	3000	0. 165, 1. 110		FIXED AL ENADIE
Scale Unit	SW7	0: Celsius, 1:Fahrenheit	SW5	0: Celsius, 1:Fahrenheit
Cold Junction	SW8	0: Yes, 1: No	SW6	0: Yes, 1: No

Table 4-5-11 SM231 Module DIP Configuration

• Software Configuration

For SM231 8AIxTC Input module, readings were saved in VW more than AIW, the specific address depends on module location, calculated as following:

x(VWx) = Slot no. x 64 + Input channel no.x 2

Slot number corresponding with installation location, and the slot 0 is the first expansion module nearest to CPU, then the second is slot 1, and so on. There are all 8 Input channels from A to H and numbered as 0 to 7.

Based on the above equation, there is the address look-up table.

VWxx	Channel 0	Channel 1	Channel 2	Channel3	Channel 4	Channel5	Channel6	Channel 7
Slot 0	VW0	VW2	VW4	VW6	VW8	VW10	VW12	VW14
Slot 1	VW64	VW66	VW68	VW70	VW72	VW74	VW76	VW78
Slot 2	VW128	VW130	VW132	VW134	VW136	VW138	VW140	VW142
Slot 3	VW192	VW194	VW196	VW198	VW200	VW202	VW204	VW206
Slot 4	VW256	VW258	VW260	VW262	VW264	VW266	VW268	VW270
Slot 5	VW320	VW322	VW324	VW326	VW328	VW330	VW332	VW334
Slot 6	VW384	VW386	VW388	VW390	VW392	VW394	VW396	VW398

Table 4-5-12 SM231 TC module address look-up table

Тір

As COTRUST TD2X and SIEMENS TD200 have address fixed at VW0, if you need to use TD2X/TD200 and SM231 8TC Module simultaneously, the SM231 8TC module cannot be installed at Slot 0, or it cannot operate normally.

4.5.3 Hybrid Temperature Module Specifications

CTH2 231-7ND32 module specifications

SM231 NTC, the hybrid analog input extension module of CTH200 series PLC, provide 4-channel analog acquisition, two for connecting the thermistor NTC temperature sensor or thermal resistance PT100 temperature sensor, the other two for collecting voltage/current signal input, input accuracy of all channels (involve the sign bit) are 16 bits. Mainly used for sterilization equipment or central air conditioning equipment, both temperature measurement and pressure signal measurement needed occasions.

Table 4-5-13	SM231-7ND	module	specifications
		modulo	opcomoutorio

Order No.	CTH2 231-7ND32
Features	
Dimension (W×H×D)	71.3 × 96 × 62mm
	24VDC indicator: ON=No fault, OFF=No 24VDC power
LED indicator	SF Indicator: ON=Module fault, Flash=Out range or disconnect,
	OFF=No fault
Power supply	
+5VDC current	87mA
L+	60mA
L+ coil voltage range	20.4~28.8VDC
Power	1.7W
Input	
	Thermistor Type:
Thermistor input range	Pt-100(3850ppm, 3920ppm, 3850.55ppm, 3916ppm, 3902ppm)
	NTC(R25=10kΩ/B=3950, R25=10kΩ/B=3435)
	Pt-100: -50°C~850°C
Temperature Range	NTC(R25=10K, B=3950): -40°C~120°C
Voltago input	NTC(R25=10K, B=3435): -40°C \sim 150°C
	0^{-5} , 0^{-10} , $\pm 5^{-10}$, $\pm 10^{-10}$
	2PT100/2NTC and 2AI
	500/40
	500VAC
	500VAC
24V to Logic	500VAC
Common mode rejection	>120dB@120VAC
Sampling	
Temperature resolution	0.1°C/0.1°F
Voltage resolution	15bits + sign bit
Transfer principle	Σ-Δ
Module update time: All channels	425ms
Wire length to sensor	Max. 100m
Conductor loop resistance	Max. 20Ω
Suppression of	
interference	85dB@50Hz/60Hz/400Hz
	Temperature (NTC: R25=10kΩ, B=3950K): -400~1200(only for
	channel 1/2)
	Temperature (NTC: R25=10kΩ, B=3435K): -400~1500(only for
Data word format	channel 1/2)
	Temperature (PT100): -500~2000(only for channel 1/2)
	Voltage/Current: Unipolar 0~32000, Bipolar -32000~+32000(only
	for channel 3/4)

Input impedance	Voltage input>10M Ω ; Current input=250 Ω ; NTC input>10M Ω
Max. Input voltage	30VDC(detect), 5VDC(source)
Input Filter attenuation	-3dB@21kHz
Basic error	0.1%FS(resistance)
Repeatability	0.05%FS
Addressing method	AIW

Application Environment

- Temperature: horizontal installation 0-55°C, vertical installation 0-45°C
- Humidity: 95% Non Condensing

Usage

SM231 NTC can be used for expanding CTH200 CPU analog measurement, connecting with CPU by Bus interface.

	SW1	SW2	SW3	SW4	SW5
input type	Valid fo	or channel '	1 and 2	Valid for cha	annel 3 and 4
100ΩPT0.003850(default)	0	0	0	—	—
100ΩPT0.003920	0	0	1	—	—
100ΩPT0.00385055	0	1	0	—	—
100ΩPT0.003916	0	1	1	—	—
100ΩPT0.003902	1	0	0	—	—
NTC: R25=10kΩ, B=3950K	1	0	1	—	—
NTC :R25=10kΩ, B=3435K	1	1	0	—	—
Forbidden	1	1	1	—	—
0-5V	_	—	—	0	0
0-20mA	_	—	—	0	0
0-10V	-	—	—	0	1
-10V-10V			_	1	0
-5V-5V		_	_	1	1

Table 4-3-14 SIVIZS 1-7 IND ITTOULLE CONTINUE	Table 4-5-14	SM231-7ND	module	configuration
---	--------------	-----------	--------	---------------

Table 4-5-14 SM231-7ND module configuration

SW6	Calibration direction	SW7	Scale Unit	SW8	Wiring scheme
0	Positive (+3276.7 $^{\circ}$)	0	Celsius (°C)	0	3-wire
1	Negative (-3276.8°)	1	Fahrenheit (°F)	1	2-wire or 4-wire

[Startup Steps]

1) Wiring the L+ and M terminals with 24VDC power supply.

2) Connect the module to CPU via the I/O expansion bus.

3) Connect the CPU power supply and communication port.

4) Connect the input signals according to wiring diagram, leave terminals of unused channel dangling, ground the EARTH terminal according to Grounding specification (single-point ground).

5) Configure the sensor type and calibration direction as requested.

6) Switch on the power supply of CPU and the module.

【Obtain input values】

1) You can read 2 bytes of input data per channel from the user program or Configuration software (such as MagicWorks PLC of Cotrust or MicroWIN of Siemens).

2) NTC full scale reading: -400~1200(R25=10K B=3950), Temperature range: -40.0~120.0℃; -400~1500(R25=10K B=3435), Temperature range: -40.0~150.0℃

PT100 full scale reading: -500~2000, Temperature range: -50.0~200.0°C

Readings at outrange or open wire depend on the scale direction (-32768 or 32767).

3) Voltage/Current full-range reading: -32000~32000, overrange readings up to -32767/32765 are still valid.

4) Readings for all channels are 32766 while no power.

Wiring Diagrams

SM231 temperature input module (CTH2 231-7ND32)

Wiring diagram

SM231 hybrid input module (CTH2 231-7ND32)

CTH2 231-7NF32 module specifications

|--|

Order No.	CTH2 231-7NF32		
Dimension (W x H x D)	71.3 x 96 x 62mm		
	24VDC indicator: ON=No fault, OFF=no 24VDC power		
LED indicator	SF Indicator: ON=Module fault, Flash=Outrange or line broken,		
	OFF=No fault		
Power supply			
+5VDC current	87mA		
L+	32.5mA		

L+ voltage range	20.4~28.8VDC
Power dissipation	1.8W
Input	
Input type	Pt100: α=3850PPm/3920PPM/3850.55PPM/3916PPM/3902PM NTC: R25=10k/B=3950 or R25=10k/B=3435
	Pt100: -50°C~800°C NTC(R25=10k/B=3950): -40°C~120°C
range	NTC(R25=10k/B=3435): -40°C~150°C Note> Error when exceeding this range, refer Table 4-30 for Diagnostic details.
Counts	8PT100/8NTC
Plug-in I/O terminal	Yes
Power isolation	Yes
Field-Logic	500VAC
Field-DC 24 V	500VAC
DC 24 V-Logic	500VAC
Common-mode rejection	120dB@120VAC
Sampling features	
Temperature resolution	0.1°C/0.1°F
Measurement principle	Σ-Δ
Module update time: All channels	825ms
Max Wire length	100m
Max Wire loop resistance	20Ω
Suppression of interference	85dB@50/400 Hz
Input impedance	>1ΚΩ
Measurement accuracy	±0.3°C
Open-wire detection	Pt100 detects 3 wires (NTC detects 2 wires), up to 3 minutes

Wiring diagram

SM231 temperature input module Pt100 (CTH2 231-7NF32)

SM231 temperature input module NTC (CTH2 231-7NF32)

Table 4-5-16 SM231-7NF DIP switch configuration

Input type	SW1	SW2	SW3
100Ω Pt 0.003850(default)	0	0	0
100Ω Pt 0.003920	0	0	1
100Ω Pt 0.00385055	0	1	0
100Ω Pt 0.003916	0	1	1
100Ω Pt 0.00302	1	0	0
NTC R25=10K/B=3950	1	0	1
NTC R25=10K/B=3435	1	1	0
Forbidden	1	1	1

Table 4-5-16 SM231-7NF	DIP	switch	configuration
------------------------	-----	--------	---------------

SW4	Calibration direction	SW5	Scale Unit	SW6	Reserved
0	Positive (+3276.7 °)	0	Celsius (°C)	0	No influence
1	Negative (-3276.8 \degree)	1	Fahrenheit (°F)	1	No influence

Software configuration

For SM231 8AI×16bits Analog input module, readings are saved in VW instead of AIW, the specific address depends on module location, calculated as following:

 $x(VWx) = Slot no. \times 64 + Input channel no. \times 2$

Slot number corresponding with installation location, and the slot 0 is the first expansion module nearest to CPU, then the second is slot 1, and so on. There are all 8 Input channels from A to H and numbered as 0 to 7.

The address look-up table based on equation above shows as below:

Table 4-5-17 SM231-7NF quick reference

VWxx	Channel 0	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6	Channel 7
Slot 0	VW0	VW2	VW4	VW6	VW8	VW10	VW12	VW14
Slot 1	VW64	VW66	VW68	VW70	VW72	VW74	VW76	VW78
Slot 2	VW128	VW130	VW132	VW134	VW136	VW138	VW140	VW142
Slot 3	VW192	VW194	VW196	VW198	VW200	VW202	VW204	VW206
Slot 4	VW256	VW258	VW260	VW262	VW264	VW266	VW268	VW270
Slot 5	VW320	VW322	VW324	VW326	VW328	VW330	VW332	VW334
Slot 6	VW384	VW386	VW388	VW390	VW392	VW394	VW396	VW398

Notice

As COTRUST TD2X and SIEMENS TD200 have address fixed at VW0, if you need to use TD2X/TD200 and SM231 8AI Module simultaneously, the SM231 8AI module cannot be installed at Slot 0, or else it cannot operate.

4.6 PID Module Specifications

Table 4-6-1 PID modules order No.

Modules	Order No.
SM231 thermocouple PID module, 4 J/K types, with intelligent PID,	OTU0 001 7TD00
isolated 16 bits precision	CTH2 231-71D32
SM231 thermocouple PID module, 8 J/K types, with intelligent PID,	
isolated 16 bits precision	CIEZ 231-71F32
SM231, 8 current inputs, 0-20mA/4-20mA, with intelligent PID,	
isolated 16 bits precision	CTH2 231-7HF32

[Main features]

- Isolation between Bus, Power and all channels, with high reliability and interference immunity.
- 16 bits sampling accuracy, with hardware filter technology to obtain more accurate and stable measuring values.
- Power supply equip with anti-protection and Surge absorption, suited for harsh industrial environment.
- Integrated advanced fuzzy logic control algorithm, accurately control temperature without program and well motion performance.
- PID output, which can be PWM or Analog-Bipolar output, support both heating and cooling control.

【Usage specifications】

- Insulation thermocouple should be used to achieve good immunity from interference
- Use Shielded wire, grounded, as signal line.
- GND terminal must be connect to the ground.
- Short unused channels to eliminate the Break line fault alarm

Table 4-6-2 SM231-7TD/7TF thermocouple PID module specifications

Modules	SM231 4AI×TC PID	SM231 8AI×TC PID			
Order No.	CTH2 231-7TD32	CTH2 231-7TF32			
Features					
Dimension (W×H×D)	71.3 × 96 × 62mm				
	24VDC indicator: ON=No fault, OFF=no 24VDC power				
LED indicator	SF Indicator: ON=Module fault,	Flash=Out range or			
	disconnect, OFF=No fault				
Power supply					
+5VDC current	87mA				
L+	34mA	39mA			
L+ coil voltage range	20.4~28.8VDC				
Power	1.8W				
Input					
Туре	Float TC				
Range	K-type TC				
Counts	4	8			
Isolation					
Field to Logic	500VAC				
Field to 24VDC	500VAC				
24VDC to Logic	500VAC				
Common mode input					
range (input channel to	120VAC				
input channel)					
Common mode	1204P@120\/AC				
rejection	21200D@1207AC				
Sampling features					
Temperature resolution	0.1℃/0.1℉				
Voltage resolution	15bits + sign bit				
Transfer principle	Σ-Δ				
Module update time: All	405ms	825ms			
channels	400HIS 820HIS				
Wire length to sensor	Max 100m				
Conductor loop resistance	Max 100Ω				
Suppression of interference	85dB@ 50Hz/60Hz/400Hz				
Data word format	Voltage: -27648~+27648				
Input impedance	>1MΩ				
Max. Input voltage	30VDC				

Temperature resolution	15bits + sign bit
Input Filter attenuation	-3dB@ 21kHz
Basic error	0.1% FS(voltage)
Repeatability	0.05% FS
Cold junction error	±1.5℃
Diagnostic program	LED: EXTF, SF
PID features	
PID algorithm	PID+FUZZY parameter adaptive tuning
Sampling time	1s
Min output pulse width	10ms
PID Type	P, PI, PD, PID
PID output type	Analog or PWM control
PID output polarity	Bipolar or Unipolar

Wiring diagram

SM231 thermocouple PID module(CTH2 231-7TD32)

SM231 thermocouple PID module (CTH2 231-7TF32)

PID address and parameter configuration

Table 4-6-3 PID address computation

Address name	Formula	Note
PID parameter address	A=(2048+S*256)+16*C	S alat Na (0, 6)
PID positive impulse	V_(2049+\$*256)+12	S = SIOLINO. (U~0)
output address	X=(2040+3 230)+12	C = C = C = C = C = C = C = C = C = C =
PID negative impulse	Y=(2048+S*256)+13	0~7, SW231-71D. 0~3)

output address	

Table 4-6-4 PID parameter output (Module to CPU)

Items	Address	Value range	Actual value
Actual temperature	VW A	-2000~13000	-200~1300 degrees
Status word	VW A+2		
PID Analog output	VW A+4	-32000~32000	

Table 4-6-5 PID parameter input (CPU to Module)

Items	Address	Value range	Actual value		
Setting		2000 12000	200, 1200 Dograa		
temperature	VVV A+120	-2000~13000	-200~1300 Degree		
		VB A+130 bit =0	VB A+130bit = 1		
	V(A+130).0	PID not run, no output	PID run		
	V(A 120) 1	Integral works all the time,	Integral separation and		
	V(A+150).1	but Kp not self-adaptive	Kp self-adaptive		
		DID uningler output	PID bipolar output,		
	V(A+130).2		-32000~32000, support		
Control byte		0~32000	heating and cooling		
	V(A+130).3	Unused			
	V(A+130).4	Integral works	Integral not work		
	V(A+130).5	Differential works	Differential not work		
	V(A+130).6	Filter the actual temperature	Not filtor the actual		
		value, enhance Interference	temperature value		
		immunity			
PID pulse output	\/\/\ \ +132	1255	12550		
period	VVI A+132	1~200	1~∠⊃⊃S		
Kp (proportional	\//\/ \+13/	00000	0.000 0		
coefficient)	VW A+134	0~9999	0~999.9		
Ti (integral time)	VW A+136	0~3600	0~3600s		
Td (differential time)	VW A+138	0~3600	0~3600s		

Table 4-6-6 Output pulse address

Channel number	Output pulse address				
	Positive	Negative			
Channel 0	V X.0	V Y.0			
Channel 1	V X.1	V Y.1			
Channel 2	V X.2	V Y.2			
Channel 3	V X.3	V Y.3			
Channel 4	V X.4	V Y.4			
Channel 5	V X.5	V Y.5			
Channel 6	V X.6	V Y.6			
Channel 7	V X.7	V Y.7			

Application example:

Calculating the address of last PID loop on the second expansion module SM231-7TF. According to the above statement: S=1, C=7 A Address, A=2048 + 1 * 256 + 16 * 7 = 2416 X Address, X=2048 + 1 * 256 + 12 = 2316 Y Address, Y=2048 + 1 * 256 + 13 = 2317 Set or read out the parameter values according to the following parameter address descriptions: VW2544 //Set temperature //Control word (parameter self-adaptive, bipolar output) VB2546 VW2548 //Pulse output period VW2550 //Kp VW2552 //Ti (s) VW2554 //Td (s) VW2416 //Actual temperature VW2418 //Status word VW2420 //PID analog output V2316.7 //Positive pulse output V2317.7 //Negative pulse output

Do not use the V memory occupied by the PID module you use when program other block for sake of PID module normal usage. You can call the specific parameter configuration library of SM231 PID.

Address the module occupied in slot 0: VW2048 to VW2298

Address the module occupied in slot 1: VW2304 to VW2554

Address the module occupied in slot 2: VW2560 to VW2810

Address the module occupied in slot 3: VW2816 to VW3066

Address the module occupied in slot 4: VW3072 to VW3322

Address the module occupied in slot 5: VW3328 to VW3578

Address the module occupied in slot 6: VW3584 to VW3834

Ladder:

NOTE													
The	paramete	er addre	ess of PII) mc	dule	000	cupy CPU	J∛	storage	area.			
To e	nsure Pl	ID modul	le normall	y i	ise, j	plea	ase do r	not	use CPU	V storage	area	the PII) (
Modu	le occup	pied whe	en you wri	.te	other	r pi	rogram.						
The	address	module	occupied	$_{ m in}$	slot	0:	VW2048	to	VW2098				
The	address	module	occupied	in	slot	1:	VW2304	to	VW2554				
The	address	module	occupied	in	slot	2:	VW2560	to	VW2810				
The	address	module	occupied	$_{in}$	slot	3:	VW2816	to	VW3066				
The	address	module	occupied	in	slot	4:	₩3072	to	VW3322				
The	address	module	occupied	in	slot	5:	VW3328	to	VW3578				
The	address	module	occupied	in	slot	6:	VW3584	to	VW3834				

Network 1

NOTE set parameter of first EM231 PID module loop(channel 0) of first expansion module(slot 0) Assuming that PID parameters need to be changed after debugging of this loop, PIDSetting is called to set parameters of this loop No need to calculate PID parameter address, just input the slot and channel number where input loop is, and enable Sun to run the loop. This case including network 1 and 2, network 1 for PID parameter initialization, and network 2 for PID running. Q0.0 is positive pulse output, Q0.1 is negative pulse output, VWO is actual temperature, VW2 is PID analog output. you can also modify PID setting parameter to use other address, corresponding address in this case is set temperature---VW120, control Word---VB122, pulse output cycle---VW124, proportion coefficient--VW126 integral time--VW128, differential time--VW130

[DIP Configuration]

SM231 TC module, supports J/K-type thermocouple, provide a 6-bit DIP switch to set measurement Unit, Cold-junction compensation and open-circuit fault direction. As with SM231 8TC, it detect open-wire forcely.

6-bit DIP switch is located below the module as shown in the following figure. SW1~SW2 are unused, SW3 for TC type, SW4 for open-wire detect direction, SW5 for measurement Unit, SW6 for Cold-junction enable. Cut-off and recycle the PLC power to make the DIP configuration effective.

		5
Items	Switch	Setting
TC type	SW3	0 - J; 1 - K
Open-wire detect	S\///	0 - Upscale (+3276.7 degrees); 1 - Downscale
direction	5004	(-3276.8 degrees)
Measurement Unit SW5		0 - Celsius; 1 - Fahrenheit
Cold-junction enable SW6		0 - Yes; 1 - No

Table 4-6-7 SM231 DIP switch configuration

Thermocouple measurement range

Data byte	1°C)	Type	Tuno K	Type T	Tupo E		米刑NI	+80m\/	
	но)	Type 5	туре к	Турет	Туре с	Type K, S		TOOULA	
22767		>1200 0°C	>1372 0°C	> 400.0°C	> 1000 0°C	> 1769 0°C	> 1200 0°C	> 04.071 mV	OE
1		>1200.0 C	>1372.0 C	2400.0 C	>1000.0 C	21700.0 C	71300.0 C	294.07 1111	1
22511	7555							97.071mV	
	· / EFF							01.01 1111	OR
								80.0029mV	
27649	6000					*		80mV	_
						I		00111	
17600					1	1769.0%	1		
	4510		T			1700.0 C			
			1272.0%0	1					
13720	3598		1372.0°C				T T		
:	:		Overrange						
13000	32C8	Î	1300.0°C				1300.0°C		NR
:	:								
12000	2EE0	1200.0°C							
:	:				<u> </u>				
10000	2710			Î	1000.0°C				
:	:								
4000	0FA0			-400.0°C		400.0°C	_		
:	:]		
1	0001	0.1°C	0.1°C	0.1°C	0.1°C	0.1°C	0.1°C	0.0029mV	
0	0000	0.0°C	0.0°C	0.0°C	0.0°C	0.0°C	0.0°C	0.0mV	
-1	FFFF	-0.1°C	-0.1°C	-0.1°C	-0.1°C	-0.1°C	-0.1°C	-0.0029mV	
:	:					Underrange			
-500	FE0C					-50.0°C			
-1500	FA24	-150.0°C				Ļ			
:	:								
-2000	F830		-200.0°C						
:	:	Underrange	20010 0	1					
-2100	F7CC	-210.0°C							
:	:	210.0 0	Underrange						
-2550	F60A			-255 0°C	-255.0°C				
:	:			Underrange	Underrange	1			
-2700	F574	1	-270.0°C	-270.0°C	-270.0°C		-270.0°C		
:	:	•							
-27648	9400		T	T	T		1	-80mV	
-27649	93FF		·	Ŧ	•		•	-80.0029m\/	
:	:							-00.0023111	
-32512	8100							-94.071 mV	UR
= 32312	#							-94.07 1111	
-32768	8000	< 210.0°C	< 270 0°C	< 270.0°C	< 270.0°C	< 50.0°C	< 270.0°C	$\leftarrow 04.07 \text{mV}$	↓ IIE
Accuracy	over full span	S0.1%	\$0.3%	<u>\$0.6%</u>	S0.1%	S0.6%	S0.1%	S0.1%	01
Accuracy	(normal range	S1.5°C	S1.7°C	<u> </u>	S1 3°C	<u> </u>	S1.6°C	S0.10°C	
without co	Id junction)	01.0 0	04.500	01.500	01.5 0	04.500	01.00	50.10 0	
Cold junc	tion error	51.5°C	S1.5°C	S1.5°C	<u>51.5°C</u>	<u> S1.5°C</u>	S1.5℃	NA	
	efficer(0, 0) = 0	verrange; NR	= Normal range	e; UK = Under	ange; ∪⊢ = Un	aernow	00707 (0 7555		
L indicates 1	that all analog va	lues greater than lues less than thi	s and greater that	n the open wire thres	reshold report the	underflow data value	, 52767 (UX7FFF) alue. ~32768 (Ox	,. (8000).	

Table 4-6-8 231-7HF32 current PID module specifications

Features	5					
Dimensio	on(W x H x D)	120.5 x 80 x 62 mm				
Weight		210 g				
Insert I /	O terminal	No				
Power c	onsumption					
Bus(5 V	DC)	87 mA				
L+		37 mA				
Power		1.8 W				
Input fea	atures					
Туре		8, analog				
Input ran	ge/resistance	Current input				
Maximun input volt	n Permitted age	30 V DC				
	Field-logic	500 V AC				
Isolation	Logic- 24 VDC	500 V AC				
	24 VDC-logic	500 V AC				
Update ti	me	825 ms(all channels)				
Measure	ment principle	SIGMA-DELTA				
Resolutio	on	15 bit + signal				
Tempera	ture	0.1 °C / 0.1 °F				
Noise su	ppression	85 dB				
Noise fre	quency	50 / 60 / 400 Hz				
CMV		120 V AC				
CMR		120 dB @120 V AC				
Basic err	or	0.1% FS(current)				
Repeatal	bility	0.05% FS				
Diagnosi	s program	LED: EXTF, SF				
Maximun	n cable length	100 m —sensor				
Max cable resistance		10 Ω				
PID features						
PID algorithm		PID+FUZZY parameter self-adjusted				
Sampling	g time	1s				
Minimum	output pulse	10ms				
PID type		P, PI, PD, PID				
PID outp	ut type	Analog or PWM				
PID output polarity		Unipolar or bipolar				

SM231 current PID module(CTH2 231-7HF32)

Table 4-6-9 DIP switch configuration

SW1	SW2	SW3	SW4	SW5	SW6	Range	Resolution
ON	ON	OFF	OFF	OFF	OFF	0~20mA	0.1℃/F
ON	ON	ON	OFF	OFF	OFF	4~20mA (default)	0.1℃/F

PID address and parameter configuration

Table 4-6-10 PID address computation

Address name	Formula	Note
PID parameter address	A=(2048+S*256)+16*C	
PID positive pulse output address	X=(2048+S*256)+12	S = Slot No. $(0~6)$ C = Channel No. (SM231-7HF:
PID negative pulse output address	Y=(2048+S*256)+13	0~7)

Table 4-6-11 PID parameter output (Module to CPU)

Items	Address	Value range	Actual value	
Actual		2000 12000	-200~1300 degrees	
temperature	VVVA	-2000~13000	(default 1300)	
Status word	VW A+2			
		Bipolar: -32000~32000		
FID Analog output	VVV A+ 4	Unipolar: 0~+32000		

Table 4-6-12 PID parameter input (CPU to Module)

Items	Address	Value range	Actual value
Setting	VW A+128	-2000~13000	-200~1300 Degree
temperature	VW / (120	2000 10000	200 1000 Dogioo
	VB A+130	VB A+130 bit =0	VB A+130bit = 1
	V(A+130).0	PID not run, no output	PID run
	V(A+130).1	Integral works all the time,	integral separation and Kp
Control byte		but Kp not self-adaptive	self-adaptive
	V(A+130).2	PID unipolar autout	PID bipolar output,
			-32000~32000, support
		0~32000	heating and cooling

	V(A+130).3	Unused	
	V(A+130).4	Integral works	Integral not work
	V(A+130).5	Differential works	Differential not work
	V(A+130).6	Filter the actual temperature value, enhance Interference immunity	Not filter the actual temperature value
PID pulse output period	VW A+132	1~255	1~255s
Kp (proportional coefficient)	VW A+134	0~9999	0~999.9
Ti (integral time)	VW A+136	0~3600	0~3600s
Td (differential time)	VW A+138	0~3600	0~3600s
Range	VW A+140	0~13000	0~1300°

Table 4-6-13 Output pulse address, formula: X=(2048+S*256)+13; Y=(2048+S*256)+13:

Channel number	Output pulse address				
Channel number	Positive	Negative			
Channel 0	V X.0	V Y.0			
Channel 1	V X.1	V Y.1			
Channel 2	V X.2	V Y.2			
Channel 3	V X.3	V Y.3			
Channel 4	V X.4	V Y.4			
Channel 5	V X.5	V Y.5			
Channel 6	V X.6	V Y.6			
Channel 7	V X.7	V Y.7			

Example:

Calculate last PID loop address of the second expansion module after 231-7HF , Kp=1200,		
Ti=360, Td=50.se	t the pulse output cycle =2s, last channel of second module: S=1, C=7	
A address	A=2048+1*256+16*7=2416	
X address	X=2048+1*256+12=2316	
Y address	y=2048+1*256+13=2317	
DB BLOCK paran	neters: // S=1, C=7	
VW2544 500	// Setting temperature	
VB2546 16#07	// Control Word (PID enable, self-adjusted and bipolar output	
VW2548 2	// Pulse output cycle	
VW2550 1200	// Kp proportional coefficient	
VW2552 360	// Ti integral time(s)	
VW2554 50	// Td differential time(s)	
VW2556 13000	// Range 1300 (default)	
VW2416 0	// Actual temperature	
VW2418 0	// Status Word	
VW2420 0	//PID analog output	

```
NOTE
The parameter address of PID module occupy CPU V storage area.
To ensure PID module normally use, please do not use CPU V storage area the PID
Module occupied when you write other program.
The address module occupied in slot 0: VW2048 to VW2300
The address module occupied in slot 1: VW2304 to VW2556
The address module occupied in slot 2: VW2560 to VW2812
The address module occupied in slot 3: VW2816 to VW3068
The address module occupied in slot 4: VW3072 to VW3324
The address module occupied in slot 5: VW3328 to VW3580
The address module occupied in slot 6: VW3584 to VW3836
```

Network 1

NOTE

```
set parameter of first EM231-7HF PID module loop(channel 0) of first expansion
module(slot 0)
Assuming that PID parameters need to be changed after debugging of this loop,
PIDSettingCT7HF is called to set parameters of this loop(you need to add
em231-7hf_pid library first). S
no need to calculate PID parameter address, just input the slot and channel number
where input loop is, and enable Run to run the loop.
this case including network 1 and 2, network 1 for PID parameter initialization, and
network 2 for PID running.
QO.O is positive pulse output, QO.1 is negative pulse output, VWO is actual
temperature, VW2 is PID analog output.
you can also modify PID setting parameter to use other address, corresponding
address in this case is:
set temperature--VW120, control Word--VB122, pulse output cycle--VW123, proportion
coefficient--VW125
integral time--VW127, differential time--VW129, temperature sensor range--VW131
```


4.7 **Communication Module Specifications**

Table 4-7-1 Communication modules Order info

Modules	Order No.
SM277A Profibus DP slave interface module, 12M, optoelectronic isolation	CTH2 277-0AA32
SM277B Profibus DP slave module, 1.5M, optoelectronic isolation	CTH2 277-0AB32
SM277C CAN slave module, with 8DI/6DO, optoelectronic isolation, expand to 7 modules	CTH2 277-0AC32

Both SM277A and SM277B adopt photoelectric isolation technology, with high reliability and strong anti-interference ability. These two modules are equipped with terminal resistance, bus connection, no need for special network connector. Its power supply has the function of reverse connection protection and surge absorption, and can be used in harsh working environment.

However, SM277A needs to cooperate with the CPU, while SM277B can be used as a standalone slave station with six extension modules, the scale of slave station I/O up to 128DI/128DO, 48AI/24AQ.

4.7.1 SM277A DP Slave Interface Module Specifications

Table 4-7-2 SM277A modules specifications

General	
Order No.	CTH2 277-0AA32
Dimension (WyHyD)	71 3 × 96 × 62mm

Order No.	CTH2 277-0AA32					
Dimension (W×H×D)	71.3 × 96 × 62n	าm				
Port number	1					
Electric interface	Isolated RS485					
Native I/O	0					
Max expansion modules	6					
PROFIBUS-DP/MPI	0 6/10 2/45 45/		(hpg: 1/1 E/2 C/	12Mbpa		
baud rate (auto setting)	9.0/19.2/40.40/8	9.0/19.2/45.45/93.75/187.5/500Kbps; 1/1.5/3.6/12Mbps				
Protocol	PROFIBUS-DP	and MPI				
LED	OFF	Red	Flash Red	Green		
	Not in data			In data		
	exchange mode			exchange mode		
	No error	Leave the data	parameterize/			
DP ERROR		exchange	configuration			
		mode	error			
POW/FR	No 24V power			24VDC power		
				normal		
CPU FAULT	Good health	Internal fault				
Cable length (Max)						
< 93.75Kbps	1200m					
187.5Kbps	1000m					
500Kbps	400m					
1 ~ 1.5Mbps	200m					

3 ~ 12Mbps	100m	
Network performance		
Station address	0 ~ 126 (setting by DIP switch)	
Max stations per	32	
segment	52	
Max stations per	126 up to 125 SM277 stations	
network		
MPI connections	Total 6, 2 reserved (1 used for PG, the other used for OP)	
24VDC Power requirement		
Voltage range	20.4 ~ 28.8VDC (class 2 or PLC sensor power)	
Power consumption	2.3W	
Max current (Module	70m A	
only with port active)		
Ripple noise (<10Mhz)	<1V peak to peak (Max)	

Wiring diagram

DIP Address configuration

DIP SW1-8 (in binary), SW1 for the LSB, SW8 for the MSB (must be "OFF"), SW1-SW7 set as "ON" - "1", "OFF" - "0", calculated as following:

 $\label{eq:2.1} Address = SW1 \times 2^{0} + SW2 \times 2^{1} + SW3 \times 2^{2} + SW4 \times 2^{3} + SW5 \times 2^{4} + SW6 \times 2^{5} + SW7 \times 2^{6}$

Table 4-7-3	Address	switch	configuratio	n
-------------	---------	--------	--------------	---

Address	SW1~SW8	Address	SW1~SW8	Address	SW1~SW8
0	0000 0000	43	1101 0100	86	0110 1010
1	1000 0000	44	0011 0100	87	1110 1010

2	0100 0000	45	1011 0100	88	0001 1010
3	1100 0000	46	0111 0100	89	1001 1010
4	0010 0000	47	1111 0100	90	0101 1010
5	1010 0000	48	0000 1100	91	1101 1010
6	0110 0000	49	1000 1100	92	0011 1010
7	1110 0000	50	0100 1100	93	1011 1010
8	0001 0000	51	1100 1100	94	0111 1010
9	1001 0000	52	0010 1100	95	1111 1010
10	0101 0000	53	1010 1100	96	0000 0110
11	1101 0000	54	0110 1100	97	1000 0110
12	0011 0000	55	1110 1100	98	0100 0110
13	1011 0000	56	0001 1100	99	1100 0110
14	0111 0000	57	1001 1100	100	0010 0110
15	1111 0000	58	0101 1100	101	1010 0110
16	0000 1000	59	1101 1100	102	0110 0110
17	1000 1000	60	0011 1100	103	1110 0110
18	0100 1000	61	1011 1100	104	0001 0110
19	1100 1000	62	0111 1100	105	1001 0110
20	0010 1000	63	1111 1100	106	0101 0110
21	1010 1000	64	0000 0010	107	1101 0110
22	0110 1000	65	1000 0010	108	0011 0110
23	1110 1000	66	0100 0010	109	1011 0110
24	0001 1000	67	1100 0010	110	0111 0110
25	1001 1000	68	0010 0010	111	1111 0110
26	0101 1000	69	1010 0010	112	0000 1110
27	1101 1000	70	0110 0010	113	1000 1110
28	0011 1000	71	1110 0010	114	0100 1110
29	1011 1000	72	0001 0010	115	1100 1110
30	0111 1000	73	1001 0010	116	0010 1110
31	1111 1000	74	0101 0010	117	1010 1110
32	0000 0100	75	1101 0010	118	0110 1110
33	1000 0100	76	0011 0010	119	1110 1110
34	0100 0100	77	1011 0010	120	0001 1110
35	1100 0100	78	0111 0010	121	1001 1110
36	0010 0100	79	1111 0010	122	0101 1110
37	1010 0100	80	0000 1010	123	1101 1110
38	0110 0100	81	1000 1010	124	0011 1110
39	1110 0100	82	0100 1010	125	1011 1110
40	0001 0100	83	1100 1010	126	0111 1110
41	1001 0100	84	0010 1010		
42	0101 0100	85	1010 1010		

Table 4-7-4 Terminal resistance

Terminal resistance	Meaning
ON	Located on the last node of network
OFF	Not Located on the last node of network

4.7.2 SM277B DP Slave Module Specifications

Table 4-7-5 SM277B modules specifications

General			
Order No.	CTH2 277-0AB32		
Dimension (W×H×D)	71.3 × 96 × 62mm		
Port number	1		
Electrical interface	Isolated RS485 (500VAC)		
PROFIBUS-DP baud rate (auto-set)	9.6/19.2/45.45/93.75/187.5/500Kbps; 1/1.5Mbps		
Protocol	PROFIBUS-DP V0 slave device		
Native I/O	None		
Extended I/O			
Max extended modules permitted	6		
Max I/Os (Image)	256(128 In/128 Out)		
LED indicator			
ON(Green)	Light on after power up		
	Light on when SM277B found error during serf-check		
Sr(Red)	(including address outrange) or expansion I/O module fault.		
BF(Red)	Flash when no exchange with Master.		
Cable length (max)			
< 93.75Kbps	1200m		
187.5Kbps	1000m		
500Kbps	400m		
1~1.5Mbps	200m		
Network performance			
Station address	0~126(set by DIP switch)		
Max stations per segment	32		
Max stations per network	126, up to 125 SM277B stations		
24VDC power requirem	ent		
Voltage range	20.4~28.8VDC (class 2 or PLC sensor power)		
Isolation	None		
Power consumption	8W		
Output current for sense	sor (24VDC)		
Voltage range	20.4~28.8VDC (class 2 or PLC sensor power)		
Max output current at	400m A		
24V			
Output current for expa	Insion module (5VDC)		
Max	outout	current at 5V	660mA
-------	--------	---------------	---------
IVIAX	output	current at 5v	000IIIA

Wiring diagram

SM277B PROFIBUS DP slave module (CTH2 277-0AB32)

Set PROFIBUS address

You can use DIP switch to set PROFIBUS address. Cut-off and recycle the power of SM277B module to make them effective after you change the address.

DIP switch SW1-8 (in binary), SW1 for the LSB, SW8 for the MSB (must be "OFF"), SW1-SW7 set as "ON" - "1", "OFF" - "0", calculated as following:

Address =SW1x2⁰+ SW2x2¹ +SW3x2² +SW4x2³+ SW5x2⁴ +SW6x2⁵ +SW7x2⁶

Table 4-7-6 DIP Address configuration

Address	SW1~SW8	Address	SW1~SW8	Address	SW1~SW8
0	0000 0000	43	1101 0100	86	0110 1010
1	1000 0000	44	0011 0100	87	1110 1010
2	0100 0000	45	1011 0100	88	0001 1010
3	1100 0000	46	0111 0100	89	1001 1010
4	0010 0000	47	1111 0100	90	0101 1010
5	1010 0000	48	0000 1100	91	1101 1010
6	0110 0000	49	1000 1100	92	0011 1010
7	1110 0000	50	0100 1100	93	1011 1010
8	0001 0000	51	1100 1100	94	0111 1010
9	1001 0000	52	0010 1100	95	1111 1010
10	0101 0000	53	1010 1100	96	0000 0110
11	1101 0000	54	0110 1100	97	1000 0110
12	0011 0000	55	1110 1100	98	0100 0110

13	1011 0000	56	0001 1100	99	1100 0110
14	0111 0000	57	1001 1100	100	0010 0110
15	1111 0000	58	0101 1100	101	1010 0110
16	0000 1000	59	1101 1100	102	0110 0110
17	1000 1000	60	0011 1100	103	1110 0110
18	0100 1000	61	1011 1100	104	0001 0110
19	1100 1000	62	0111 1100	105	1001 0110
20	0010 1000	63	1111 1100	106	0101 0110
21	1010 1000	64	0000 0010	107	1101 0110
22	0110 1000	65	1000 0010	108	0011 0110
23	1110 1000	66	0100 0010	109	1011 0110
24	0001 1000	67	1100 0010	110	0111 0110
25	1001 1000	68	0010 0010	111	1111 0110
26	0101 1000	69	1010 0010	112	0000 1110
27	1101 1000	70	0110 0010	113	1000 1110
28	0011 1000	71	1110 0010	114	0100 1110
29	1011 1000	72	0001 0010	115	1100 1110
30	0111 1000	73	1001 0010	116	0010 1110
31	1111 1000	74	0101 0010	117	1010 1110
32	0000 0100	75	1101 0010	118	0110 1110
33	1000 0100	76	0011 0010	119	1110 1110
34	0100 0100	77	1011 0010	120	0001 1110
35	1100 0100	78	0111 0010	121	1001 1110
36	0010 0100	79	1111 0010	122	0101 1110
37	1010 0100	80	0000 1010	123	1101 1110
38	0110 0100	81	1000 1010	124	0011 1110
39	1110 0100	82	0100 1010	125	1011 1110
40	0001 0100	83	1100 1010	126	0111 1110
41	1001 0100	84	0010 1010		
42	0101 0100	85	1010 1010		

Table 4-7-7 Terminal resistance

Terminal resistance	Meaning	
ON	Located on the last node of network	
OFF	Not Located on the last node of network	

4.7.3 SM277C CANopen Slave Module Specifications

CANopen slave interface module implements optoelectronic isolation with high reliability and high interference immunity. Two RJ45 CANopen communication ports can be used with CAN master system to compromise a distributed control system. Up to 7 CTH200 modules can be expanded by using this module (PID module is not supported), build in 8DI/6DO of transistor type and a 12-pin address switch for selecting station address, baud rate and terminal resistor.

Table 4-7-8 SM277C module specifications

General				
Order No.		CTH2 277-0AC32		
Dimension (W×H×D)		71.3 × 96 × 62 mm		
Digital input				
Ports		2 RJ45 port for CANopen		
Rated input vo	oltage	24VDC		
Туре		Source/Drain (IEC class 1 source point)		
Max continuou	is voltage	30VDC		
Voltage surge		35VDC for 0.5s		
Input delay		6.4ms (min. 6.3ms)		
Isolation (Field	to Logic)	Yes		
Output on simultaneously		8 (all at 55°C)		
O a h la la reath	Shield	Max 500m		
Cable length	Unshielded	Max 300m		
Digital Output	t			
Туре		Solid-MOSFET (Source)		
Rated output v	/oltage	24VDC		
output voltage	range	20.4~28.8VDC		
Output current (max at logic		0.5A		
Output groups	i	1		
Outputs per co	ommon	6		
Output on sim	ultaneously	6		
Maximum current for single group		4.5A		
Surge current		8A for 100ms		
Isolation		Optical couple isolation, 500VAC for 1 minute		
Outrout Labo	OFF-ON	Max 15µs		
Output delay	ON-OFF	Max 130µs		
Cable length	Shield	Max 500m		
	Unshielded	Max 300m		

Wiring diagram

SM277C CANopen slave module (CTH2 277-0AC32)

DIP switch configuration

SM277-0AC32 DIP switch									
Ś	Switch	Usage							
SW1									
SW2									
SW3	Nada								
SW4	Node	In binary: 1 - lowest bit, 7 - nignest bit							
SW5	address	Note. 0 - global ad	Note: U - global address, U is not allowed during operation.						
SW6									
SW7									
SW8		In binary: 8 - lowe:	st bit, 1	0 - hig	jhest bi	t			
SW9	Doud rate	DIP setting	111	110	101	100	011	010	001
SW/10	Dauditale	Baud rate (Kbps)	1000	800	500	250	125	50	20
50010		Max length (m)	25	50	100	250	500	1000	2500
SW/11	Terminal	Terminal "ON" for device at		rk into	faca "	∩EE" f	ar tha c	othor	
30011	resistor	ON TO DEVICE AT NETWORK INTERNACE, "OFF TO The other.							
SW12	reserved								

Network Architecture

SM 277C status LED can be used to diagnose the CANopen master-slave network. Switch on the power of SM 277C, "ON" LED (Green) for the power would light on. If the BF and SF LED remain OFF, indicate the SM 277C works normal, on or flash mean fault in hardware configuration or wiring. If the main system running well, see table below for the reason for error:

Table 4-7-10 Function of SM 277C LED lights

LED	ON	OFF	FLASH	Note
ON	Normal power	No power		Power indicator
SE	Expansion I/O	Expansion I/O module		System Fault
эг	module fault	no fault		System r adit
DE	CAN network not	CAN potwork dotootod	Inconsistent	Ruo Foult
БГ	detected	CAN helwork delected	configuration	DUS Fault

4.7.4 SM277-PN Slave Module Specifications

Features				
Dimension(W×H×D)	71×80×62 mm			
Power consumption				
Rated input voltage	24V DC			
Input voltage range	20.4V~28.8V DC			
Input current	0.8A			
Power voltage of bus	+5V DC			
Power current of bus	1.1A			
Isolation	External power is isolated from system power			
Power protection	Reverse-connection protection and surge absorption			
LED lights features				
24) (nower light(groop)	ON = 24VDC power supply normal			
24v power light(green)	OFF = No 24VDC power supply			
SE indicator light(rod)	ON = Expansion I/O bus or PROFINET module malfunction			
SF indicator light(red)	OFF = No error			
	ON = PROFINET bus communication error (not connect with switch,			
RE indicator light(rod)	no Internet detected)			
BF indicator light(red)	Blinking = different configuration			
	OFF = No error			
MT indicator light(yellow)	ON = Synchronization lost			
(maintenance)	OFF = No error			
P1R/P2R port indicator	ON = With connection to switch /PN master station			
light (green)	OFF = No connection to switch /PN master bus			
P1R/P2R port indicator	ON = With data transceiver to /PN master bus			
light(yellow)	OFF = No data transceiver to switch /PN master bus			

Table 4-7-11 Specifications of SM277-PN module

Table 4-7-12 Specifications of SMS277-PN module

Expansion I/O specifications				
Max modules numbers	8(digital modules, analog modules, temperature modules and PID			
each slave bus support	control modules, except other type modules)			

CTH200 PLC self-defined 4MHZ bus protocol				
Analog IO max configuration is 64AI/32AQ				
Digital IO max configuration is 256DI/256DQ				
Support stellate, tree form, linetype and annular structure				
on port				
One double RJ45 port				
Transmission speed of Ethernet is 10Mbps				
PROFINET transmission speed is 100Mbps, full duplex				
Ping, arp, network diagnosis (SNMP)/MIB-2, LLDP				
250us~4ms				
S7-300/400, SMART CPU and S7-1200/1500				
100m(100BASE-TX)				
Support stellate, tree form, linetype and annular structure				
Communication port isolated				
PROFINET GSD file in XML format				
Support expansion of 8 slot after adding CTH2 277-0PN32 modules				
Digital modules, analog modules, temperature modules and PID				
control modules, cannot be other types modules				

4.8 Weighing Module Specifications

Table 4-8-1 Specifications of SM231 weighing module

Order No.	CTH2 231-7WA32
	Power indicator, ON=24VDC power supply normal, OFF=no
LED	24VDC power supply
	SF indicator, flash = overrange or line broken, $OFF = no error$
Power supply	
+5VDC consumption	<140mA
L+	<100mA
L+ coil voltage range	20.4~28.8VDC
Power dissipation	5W
Input features	
Туре	Strain gage, with 4-wire or 6-wire
	0~1mV/V
Range	0~2mV/V
	0~4mV/V
Number	One-channel weighing sensor
Weighing sensor	Without Explosion-proof interface: 40 Ω < R < 4010 Ω
resistor	With Explosion-proof interface: 87 Ω < R < 4010 Ω

Isolation					
Field to Logic	500VAC				
Field to 24VDC	500VAC				
24V to Logic	500VAC				
Common mode	> 1204P@ 120VAC				
rejection	>1200D@120VAC				
Resolution performance					
Temperature effect on	<+0.1u\//K				
zero	3±0. τμν/κ				
Measurement principle	Σ-Δ				
Cable length to senor	Max. 500 m				
Noise rejection	85db@50Hz/60Hz				
data word format	Voltage: 0~65535				
Input resolution	16 bits				
Basic error	0.05%Fs				
Linear error	0.01%Fs				

Terminal connection

Weighing module is a measurement module with high accuracy, which can be used for low level signal down to 1.5μ V reliably. To acquire operation with no fault, it's essential to assemble and wire cable correctly.

Following these rules to wire the weighing sensor:

1) If more than 1 sensor would be connected (in parallel), use a terminal box. If distance from the senor to module is larger than to terminal box, a specified expansion box.

- 2) Cable Shield should always connect to the Cable gland of terminal box or expansion box.
- 3) Twisted Pair wire should be used and shielded:
 - Sensor wire SEN+/SEN-

Voltage measurement wire SIG+/SIG-

Power voltage wire EXC+/EXC-.

- 4) The shield must be connected to the shielded joint clamp.
- 1. 4-wire connection for the weighing sensor

When connecting 4-wire sensor, you must terminal the EXC+ with SENS+, EXC- with SENS-, or else the module cannot work normally.

2. 6-wire connection for the weighing sensor

Wiring Diagram

SM231 weighing module (CTH2 231-7WA32)

4.9 Motion Control Module Specifications

Table 4-9-1 Specifications of motion control module

Order number	CTH2 253-1BH32			
General	24VDC input			
Input counts	8			
Туре	Drain/Source (IEC class1/Drain)			
Rated voltage	24 VDC at typical 5mA			
Maximum Continuous	20 V/DC			
permissible voltage				
Surge voltage	35 VDC for 0.5 s			
Logic 1(Min)	15.6 VDC(I0.0, I0.1, I0.2, I0.4, I0.5, I0.6) at 2.72mA			
	12.8VDC(I0.3, I0.7) at 2.55mA			
	15.4VDC(I0.0, I0.1, I0.2, I0.4, I0.5, I0.6) at 2.69mA			
	12.6 VDC(I0.3, I0.7) at 2.51mA			
Input delay	< 1.1us(10.0, 10.1, 10.2, 10.4, 10.5, 10.6)			

		< 1ms(I0.3, I0.7)	
Connection of 2 Wire			
Proximity Sensor (Bero)		1mA	
Permissible le	akage current		
Isolation (Field	d to Logic)	Yes	
Optical Isolation	on (Galvanic)	500 VAC for 1 minute	
HS input rate		200KHz(single/dual phase) (I0.0, I0.4)	
HSC Logic 1=	16~26 VDC	200KHz (A/B phase) (I0.0 & I0.1, I0.4 & I0.5)	
		(Input Wave shape ratio 40%~60%)	
Number of inp	uts on	All	
simultaneously	y		
	Shield	500m for standard input, 50m for HSC (using shielded	
Cable length	oniela	twisted pair for HSC and ground the shield)	
	Unshielded	300m for standard input	
HSC max com frequency	mutating	50KHz	
General		Transistor output	
Output counts		8	
Туре		Solid – MOSFET(drain)	
Rated voltage		24 VDC	
Output voltage	e range	5~28.8 VDC	
Surge current	(max)	8A for 100ms	
Logic 1(max)		0.5V	
Logic 0(min)		VCC-0.5V	
Rated current per point (max)		0.5A	
Rated current per common		2.0A	
(max)		10:14	
Leakage curre	ent (max)		
lighting load (r	nax)	3.5W	
Sensing clamp	o voltage	L+ - 48 VDC, 1W power	
On resistance		Typical 0.3 Ω (max 0.6Ω)	
Isolation			
	on (Galvanic)	500 VAC, 1 minute	
Isolation groups		Refer to the wiring diagrams below	
Delay (max)			
Off to On		$0.2\mu s(Q0.0, Q0.1, Q0.2, Q0.3), 50\mu s(Q0.4, Q0.5, Q0.6, Q0.7)$	
0.1.01		Q(0,7)	
		$0.2\mu s(Q0.0, Q0.1, Q0.2, Q0.3), 130\mu s(Q0.4, Q0.3, Q0.0, Q0.7)$	
Dulas fraguenov (mov)		200KHz(Q0,0, Q0,2)	
Pulse frequency (max)		ΔII at 55°C	
		Ves. only for outputs in the same group	
Cable longth	Shield	500m	
	Shield		

Unshielded 150m

Caution

DO commands executing would be delayed a while during communication transfer; if there is only one SM253 motion control module attach after the CPU, the delay time for DO from enable to execute is about 780 μ s; if there are 5 motion control modules, the delay time would be 930 μ s.

SM253 modules are used for motion control, with 2 independent HSC MC253_HSC0 and MC253_HSC1 (200KHZ for single/dual phases); 2 channels of independent 200KHz HSP output which support instructions like MC253_PTP/SPEED_CTL/PWM in the motion_ctrl_module_lib. Refer to the Appendix *J SM253 Motion Control Library* for more details about the motion control library.

Wiring Diagrams

SM253 position control module (CTH2 253-1BH32)

					Tra	nsist	or out	put			
+[ļ	ļ	þ	ļ	•		ļ	þ	þ	
\bigcirc											
1M	٠	0	1	2	٠	3	2M	4	5	6	7
										SM2	53 DC
									CTH2	253-	1BH32
M	L+	Ť	1M	0	1	2	3	4	5	6	7
\bigcirc											
Ē			*								┭
24VE	C										

Table 4-9-2 I/O definition

Input	Definition	Output	Definition
10.0	Pulse input for MC253_HSC0	Q0.0	Pulse output for axis 0
10.1	External direction signal for MC253_HSC0	Q0.1	Direction signal for axis 0
10.2	Reset signal for MC253_HSC0	Q0.2	Pulse output for axis 1
10.3	Emergency stop for motion axis 0	Q0.3	Direction signal for axis 1
10.4	Pulse input for MC253_HSC1	Q0.4	
10.5	External direction signal for MC253_HSC1	Q0.5	Normal outputs
10.6	Reset signal for MC253_HSC1	Q0.6	
10.7	Emergency stop for motion axis 1	Q0.7	

4.10 BD Expansion Board Specifications and Installation

Description	Order No.
EBH AMS-03 Analog I/O Expansion Board, 2*12bits voltage	CTH2 AMS-03S1-EB

resolution, 1*12bits voltage/current output resolution	
EBH-AMS-06 Analog I/O Expansion Board,4*12bits voltage	CTH2 AMS-06S1-EB
resolution, 2*12bits voltage output resolution	
EBH CAN master communication Expansion Board, 1Mbps,	
optoelectronic isolation	CITZ CAN-UISI-EB

4.10.1 Analog Expansion Board Specifications

Analog Expansion Board EBH-AMS-03/EBH-AMS-06 can be used with CTH200 modules by invoking in the CTH200_CPU expansion slot.

Itomo	Specifications						
nems	EBH-AMS-03	EBH-AMS-06S1	EBH-AMS-06S2				
Features							
Dimension (W $ imes$ H $ imes$ D)		24×14.4×68.2mm					
Voltage supply		+5VDC					
Current	60n	nA	200mA				
LED							
Power LED	Health status of power:	ON - 5VDC normal, O	FF - no power				
SF LED	Calibration status, FLAS	SH - calibration failure					
Analog input							
Power supply	5VDC, output current <	200mA					
Counts	2	4					
Туре	Single-end voltage inpu	it					
Range	±10V						
Data word format for	22000 to 122000						
full-scale	-32000 10 +32000	32000 to +32000					
DC input impedance	>100KΩ						
Max input voltage	30VDC						
Resolution	11 bits + 1 sigh bit						
Isolation	None						
Accuracy							
Worst case (0-55°)	±2.5% full scale						
Typical (25 °)	±1.0% full scale						
Repeatability	±0.05% full scale						
Conversion time from analog to digital	125ms						
Transform principle	Σ-Δ						
Step response	Max 250ms						
Noise suppression	Typical -20dB@50Hz						
Analog output							
Counts	1	2					
Signal rongo	Voltage 0-10V						
	Current 0-20mA		Current 0-20mA				

Table 4-10-2 Analog Expansion Board I/O specifications

Data word format for					
full-scale	0 to +32000				
Resolution	12bits	12bits			
	Voltage 5.00µA	Voltage 5.00µA			
LSD value	Current 2.50mV				
Isolation	None				
Accuracy					
	Voltage ±3% full-scale				
Worst case (0-55 °)	Current ±2% full	Current \pm 2% full			
	scale	scale			
	Voltage ±1% full scale				
Typical (25 °)	Current \pm 1% full	Current \pm 1% full			
	scale	scale			
Settling time	0.1ms				
 Resistive load 		0.2 ms			
 Capacitive load 		3.3 ms			
 Inductive load 		0.5 ms(1mH)			
Max output drive	Voltage ≥5000Ω	Current ≤500Ω			

Terminal definition

1. Schematic and terminal diagrams for AMS-03 are shown in the following figures. Table following give the definition of each terminal.

Table 4-10-3 AMS-03 Terminal definition

Terminal	Signal definition	Terminal	Signal definition
1	Float	5	Analog Input A+
2	Voltage output VO	6	Analog Input B+
3	Current output IO	7	Ground GND-M
4	Ground GND-M	8	Earth

2. Schematic and terminal diagrams for AMS-06 are shown in the following figures

Table 4-10-4 AMS-06 Terminal definition

Terminal	Signal definition	Terminal	Signal definition
1	Output V0/I0	5	Analog Input B+
2	Output V1/I1	6	Analog Input C+
3	Ground GND-M	7	Analog Input D+
4	Analog Input A+	8	Ground GND-M

<**Note**> A+/B+/C+/D+ are voltage inputs for positive or negative voltage, V1 must be connected with Terminal 3, D+ connected with Terminal 8. M is the common Ground, any output connecting directly with M is not allowed, or it will cause output short.

4.10.2 CAN Expansion Board Specifications

Table 4-10-5 Specifications of CAN-01 expansion board

Basic features	Basic features						
Dimension (W×H×D)	137 x 9	137 x 96 x 62mm					
Suitable product	CPU H	224X/H2	26XL/H22	28XL			
Power dissipation	9W						
CANopen communication	CANopen communication						
Communication interface	1 (8 Pir	ı)					
Transmission rate (kbps)	1000	800	500	250	125	50	20
Max length (m)	25	50	100	250	500	1000	2500
Vax station address 127							
Station address range	1-127						
Max number of slaves	32						

		No. of Bytes	start address in memory
Max Digital access	Input	64	IB16
	Output	64	QB16
		No. of channels	start address in memory
Max Analog access	Input	8	AIW64
	Output	8	AQW64

Schematic and terminal diagrams of CAN-01 are shown in the following figures.

Table 4-10-6 Terminal definition

Terminal	Signal definition
1	CAN_H
2	CAN_L
3	Terminal 2 with 3 when matching Termination resistor
4	Ground

4.10.3 Circuit Guidance Expansion Board Specifications

Circuit guidance expansion board, one of the CTH200 series PLC expansion boards, is used to detect the connection and charging status between charging piles and charging gun or car, which can be used to control the charging speed. Suitable both for AC and DC charging.

Table 4-10-7	Specifications of	of circuit	quidance	expansion	board
	opcomoutions	or on our	guidanoc	capanoion	bourd

	5		
Order No.	CTH2 PWM-04S1-EB		
Features			
Dimension(W×H×D)	28×14.4×68.2 mm		
Power			
Bus power voltage	+5V DC		
Bus power current	< 200mA		
LED			
Power indicator	ON = 5VDC power supply normal, OFF = no power supply		
SF indicator	Flashing =calibration fail, flash one time= successfully calibration		
CC indicator	ON = connected, OFF = disconnected		
Function			
Expansion	With bus expansion function		
Output protection	With TVS protection		

Filter		Combined hardware filter with software one		
Power supply		With 5V DC power supply for modules		
Input features				
Туре		Single-ended input(Unipolar/bipolar)		
Counts		2		
Full-scale v	voltage	0 ~ +12V		
Max input v	/oltage	+30V DC		
Input resist	ance	≥100K		
Data forma	t	0 ~ +32000		
Input response	step	Max. 200ms		
DAC time		50ms		
Isolation		No		
Resolution		12 bits		
Noise supp	ression	Typical: -20dB@50HZ		
Δοουταογ	Worst	±2% full-range(0°C-55°C)		
Accuracy	Typical	±1% full-range(25°C)		
Repeatabili	ty	±0.05% full-range		
Output features				
Туре		Unipolar/bipolar		
Counts		2		
Voltage out	put	+ 12V ± 5%		
PWM outpu	ut	±12V ± 5%		
PWM parameter				
PWM rang format	ge data	0 ~ 1000		
Full-range		0(-12V); 1000(+12V)		
Output duty cycle tolerance		±0.5% full-range		
Frequency range		1000Hz ± 3%		
Voltage output time		< 3us		
Rise time Tr		< 2us		
Fall time Tf		< 2us		
Max output	drive	≥1000Ω		
+12\/ onch		12mA(RL=0 Ω)		
	e output	6mA(RL=1K Ω)		
current		4mA(RL=2K Ω)		

Terminal definition

Table 4-10-8 terminal definition

Bit	Definition	Bit	Definition
1	NC	5	СР
2	NC	6	PWM
3	NC	7	+12V
4	CC	8	PE

Diagram

CTH2 PWM-04S1-EB expansion board suits for AC and DC charging guidance

1) Diagram below shows the function of AC charging guidance:

+12V as the output port (1K resistance connected);

PWM output \pm 12V, pulse changeable PWM;

CC detect the status of cable connection (0X12--disconnected, 0X00--connected);

CP detect PWM output and connect +12V in spare time via switch S1;

PE refer to the earth

Wiring explanation:

◆ When non-loaded, S1 switch to position 2, where CP will detect 12V, CP will detect the output status (status value--0X01);

 When the car connected, load 2.74K resistance, CP detect 9V in result in charging status 2 (status value--0X02);

◆ Then switch S1 to position 1, output ± 9V PWM pulse changeable;

• Finally close S2 to make 1.3K resistance and 2.74K in parallel, then the total resistance external is about 1K, CP detect 6V PWM, in result in charging status 3(status value--0X03);

AC charging guidance diagram

2) Diagram below shows the function of DC charging guidance:

CC detect the connection status of DC charging cable, 12V means disconnected (0X12), CC will detect 6V(status 0X06) when connect 1K resistance; CC detect 4V(status 0X04) when S3 closed.

DC charging guidance diagram

Visiting mode

. . .

_ . .

The visiting mode of expansion board is SM area address visit, range from SMB114--SMW124, table 4-10-9 shows the definition of SM visiting address:

Table 4-10-9 map access address	
	ī

Function	Map access address	Function	Map access address
CC input	SMW116	PWM output	SMW124
CP input	SMW118	Reserved output	SMW126
Guidance	SMW120	Module type	SMB114
Reserved input	SMW122	Module status	SMB115

The type and status of modules will display in corresponding address when PLC access expansion board, details show as table 4-10-10

Table 4-10-10 module status definition

Name Function		Value	Explanation	
		With module	0x1E	Access one time when power
IVIOU	lie type	Without module	0x00	on
		CC disconnected	0x12	CC detect voltage 12V
	DC charging	CC connect status1	0x06	CC detect voltage 6V
		CC connect status 2	0x04	CC detect voltage 4V
		CC disconnected	0x12	Same as DC
Guidance status		CC connected	0x00	CC detect voltage 0V
	AC charging	Charging status 1	0x01	CP detect voltage 12V
olaluo		Charging status 2	0x02	CP detect voltage 9V
		Charging status 3	0x03	CP detect voltage 6V
	Abnormal	Abnormal Guidance detection abnormal		CC/CP detect nonstandard voltage
Module	R	un normal	0x00	Expansion board normal
status	Comr	nunication fail	0x01	

Calibration fail	0x02	SF indicator flashing
Access timeout	0xFF	Cannot access

4.10.4 Installation of BD Board

Following the below steps to install Analog I/O and CAN expansion boards:

- 1. Make sure the power of CPU and related devices are all cut-off, lay down the CPU module.
- 2. Remove the cover plate along the left-side of Expansion Board.
- 3. Plug the Expansion Board into board slot, make sure the pins are fit closely with the socket.
- 4. Make the right-side of cover plate inclined to insert into slot on board slot of the CPU.
- 5. Press the left-side of the cover plate inclining, fit it onto CPU again.

Notice

- CTH200 series CPU all support Analog I/O expansion board, but only H224X, H226XL and H228XL support CAN-01.
- CAN-01 can be used for CPU directly, but Analog I/O expansion board can be used for CPU only by invoking ExBoard_H200 library or special memory. For more details, please refer to chapter 6.4.2 Expansion Board Access Address.
- Hot-plug is not supported for the board.

5 Communication Protocol and Networking Mode

CTH200 series PLC support various ways of network communication, from normal serial port communication to Ethernet. Supporting communication protocols including PPI, MPI, Freeport, CANopen, Ethernet, profibus-DP and PROFINET. Choose protocol in your need, see chapter 2.2 *Communicate with CTH200* for specific communication mode and connection.

5.1 **PPI Communication**

PPI is a master-slave protocol by which the master sends request to the slave for responding. Slaves would be standby without master request. CTH200 PLC support PPI protocol to use NETR/NETW instructions transferring data with baud rate 9.6kbps, 19.2kbps and 187.5kbps. CTH200 PLC uses the build-in programming port as normal Communication networking interface, no need for additional configuration for module or software.

Up to 31 PLCs, Copanel HMIs, Siemens OP/TP panel or MPI cards as station on Host involve in the PPI communication network.

Single master in PPI

The following example is one-master with one-slave. Programming PG/PC as Master, CTH200 PLC as Slave.

Copanel HMI as Master, CTH200 PLC as Slave.

Figure 5-1 single master PPI network

Note: It's recommended to use PLC Programming cable from Cotrust. Communication cable selection is depend on specific HMI, to avoid devices damaging.

Multiple masters in PPI

The following example is two masters with one slave. Programming PG/PC and HMI as Masters, CTH200 PLC as Slave.

The following example is multiple masters with multiple slaves. Programming PG/PC and HMI as Masters, CTH200 PLC as Slaves.

Figure 5-2 Multi masters PPI network

The following example is multiple CTH200 CPUs interconnection, which using NETR/NETW instructions to achieve network communication. Each CTH200 CPUs can be either Master or Slave, they communicate with each other via the PPI port.

Figure 5-3 Multi CPU interconnection network

5.2 MPI Communication

MPI Support master-slave and master-master communication.

CTH200 PLC can be connected to MPI network by using built-in interface with baud rate 19.2Kbps or 187.5Kbps, and also communicate with SIMATIC S7-300/S7-400 CPU as slaves in MPI network.

Multiple masters in MPI network

As shown in the following figure, S7-300 PLC and Copanel HMI as masters in MPI network,

CTH200 PLC as master. S7-300 master PLC read/write the data of CTH200 by using XGET and XPUT instructions.

Figure 5-4 Multi masters MPI network

5.3 Freeport Communication

By using Freeport communication, CTH200 PLC can communicate with any third-party devices which disclosed communication protocols. These devices include Data acquisition module, controller, printer or bar code reader, drives, modems, host PC and so on.

Figure 5-5 Freeport communication

5.4 CANopen Communication

CANopen bus communication is a fast master-slave network with high-reliability. Expand a CAN communication board(CTH CAN-01S1-EB) on CPU(H224X/H226XL/H228XL) to be CAN master in the CTH200 CANopen communication system, which could exchange data with remote CAN slave(CTH2 277-0AC32) and its expansion boards as well as communicate with servo(COTRUST E10) or frequency converter supporting CANopen communication.

Figure 5-6 CANopen communication framework

As shown in the above figure, CTH200 PLC connects with SM277 CANopen module and its expansion modules via CAN-01 expansion board, thus to control the Servo Drives.

Note: For more details about related terminals and wiring on the expansion board, please refer to chapter *4.10.2 CAN Expansion Board Specifications*.

5.5 Ethernet Communication

CTH200 series PLC support various ways of communication, from Ethernet to Modbus TCP and UDP/PPI to telecommunications, monitor and data exchange using Mico.

CTH200 series PLC, which could communicate with other CPU modules, HMI or PC, support Modbus/TCP, UDP/PPI protocols for local Ethernet communication as well as remote program and monitor by Mico, a cloud platform where you can real-time view the status of remote devices.

Refer to chapter 6.2 Modbus TCP Communication and 6.3 UDP_PPI Communication for the examples. Refer to Mico Remote Monitor Manual and How to Use Mico for Program and Data Monitor on Remote PLC for details on remote program and data monitor. Download address of manuals: http://www.co-trust.com/Download/index.html

The typical network architecture of CTH200 shows as below:

5.6 Profibus-DP Communication

With high reliability, CPU, as a slave of some master, enable to connect to PROFIBUS field bus to exchange data fast and in real time as well as operate alone by DP slave module. Figure 5-9 and 5-10 show the profibus-DP network architecture of SM277A and SM277B DP slave respectively.

Refer to appendix G SM277A Module and appendix H SM277B Module for more information on using SM277A and SM277B DP slave

Figure 5-8 Construction of SM277A PROFIBUS-DP network

Figure 5-9 Construction of SM277B PROFIBUS-DP network

5.7 **PROFINET Communication**

Connect expansion modules(up to 8), as the remote I/O expansion, to PN master by SM277PN slave module. Typical PROFINET network architecture shows as bellow:

Profinet EtherCAT Communication

Figure 5-10 PROFINET network architecture

Refer to CTH200 series profinet slave module user manual for More details and example of PROFINET communication module.

Download address: http://www.co-trust.com/Download/index.html

6 Applications

Examples in this chapter show you the various ways of communication the CTH200 series PLC supported.

6.1 CANopen Communication

Example in this section shows you the data transmission via CANopen communication.

6.1.1 Components

This example use CAN master expansion Board to build CANopen network consisting of slave modules. The example using CAN master expansion board build a CANopen network consisting of slave modules.

CANopen communication components

Table 6-1 Example components

Components	Explanation
A PG/PC with MagicWorks PLC	MagicWorks PLC V2.08 version and above
A PLC programming cable	Connect program station with master station
CTH200 CPU-control module	CTH200 series PLC as CANopen master station
CAN master station expansion board	CAN-01 master station expansion board
A slave device	SM277C
CANopen bus cable	Shielded network cable or twisted-pair
Three expansion board which can be	Two digital modules and one analog module of
connected to SM277C	CTH200
Two servo drives	One E10 and other brand servo

6.1.2 Network Connection

Figure 6-1 CANopen communication framework

Figure below shows how to connect CANopen bus with CPU terminal:

Figure 6-2 CANopen bus connection

Note: Please short-connect 2 with 3 when matching with terminal resistance

6.1.3 Operating Steps

CANopen network configuration

1. Open the EasyCAN configuration interface

霝 EasyCAN Config - [PL	C2 CAN-V-1-3]				<u>- 🗆 x</u>
🔜 <u>F</u> ile <u>E</u> dit <u>P</u> LC <u>V</u> iew	<u>T</u> ool <u>W</u> indows <u>H</u> elp				_ 8 ×
6880	3 🕺 🖞	} ▲ ▼ ▶ ■	<mark>۱</mark> ۸?		
station (0) 1 2 3 4 5 6 7 8			•	Device Catalog ⊕ ☐ Master ⊕ ☐ Slave	₽×
	1	1	<u> </u>		
Module Name	Module Type	DI	DQ		
4			×	<u>د</u>	Ŀ
					1

Figure 6-3 EasyCAN configuration page

2. Add Master station

The CANopen Bus editor shows in the following figure, select the CTH200 PLC corresponding with device currently in use in the "Device Catalog" of Master, drag and drop it into slot 1 of Station 0.

- [PL	C2 CAN-V-1-3]			_ 🗆 X
🔜 <u>F</u> ile <u>E</u> dit <u>P</u> LC <u>V</u> iew	<u>T</u> ool <u>W</u> indows <u>H</u> elp			
688	🖸 📈 🗗 🛍 🖸	ੈ ▲ 🔻 ▶ 🔳	٨?	
station (0) 1 2 3 4 5 6 7 8				Device Catalog
•			<u>ب</u> ا	
Module Name	Module Type	DI	DQ	
4			Þ	<u> </u>

Figure 6-4 Add master station

Then, double-click the master CPU H226XL in slot 1, an information dialog would pop-up, shown in the following figure.

Set Baud Rate 1000kbps, select CPU for Master Type, 1 for Node ID and check the "Use CAN Bus" box.

📕 Master Mes	sage	x
Master Name: [Master Type: [CPV H226XL CPV	Baud Rate: 20 kbps • • Node ID: 1 •
💿 Use CAN Bus]	
Add Server	Del Server	Add Client Del Client
SDO Num	Node ID	SDO Num Node ID
	OK	Cancel Help

Figure 6-5 Configure master

3. Configure slave station

1) Add Slave station

Click to expand the Device Catalog, open the slave node to select the slave device corresponding with current device, drag and drop it into the configuration area, while it would be

뮲 EasyCAN Config - [PLC2 -	CAN-V-1-3]			
📠 <u>F</u> ile <u>E</u> dit <u>P</u> LC <u>V</u> iew <u>T</u> o	ol <u>W</u> indows <u>H</u> elp			_ 8 ×
6 8 8 6	🔏 🖞 🖺	▲ ╤ ▶ ■	^ ?	
station (0) 1 CPU M226XLS 2 3 4 5 6 7 8	CAN BUS (0) :	master system (NODE	E ID: 1 BAUD RATE	Device Catalog
Module Name	Module Type	DI	DQ 🔺	⊞
1 (4)OTHERS				
2				H AN HZA
3				
4				
5				
0				
•			<u>•</u>	4 P

connected with CAN BUS automatically.

Figure 6-6 Add slave

2) Setting slave parameters

Double-click the icon below CAN BUS to pop-up the Slave Info Dialog.

ः Slave Attribute	届 Slave Attribute	🚠 Slave Attribute 🗶
Slave Name: SM277C	Slave Name: E10	Slave Name: OTHERS
Node ID: 2	Node ID: 3	Node ID: 4
OK Cancel	OK Cancel	OK Cancel

Figure 6-7 Configure slave

Here you can set the following slave parameters:

- Slave Name: Name of the Slave (Default as SM277C, CT E10 or OTHERS).
- Node ID: Range from 1 to 127.

3) Configure expansion modules for Slave SM277C

Click the right-side of Device Tree to open the Analog module or Digital module node under SM277C, check the module corresponding with current device, drag and drop it into specified slot, then the module can be added into current slave.

You can also double-click the required module nodes on Device Tree to add them into current slave in order. After which the I/Q address would be assigned automatically.

显 EasyCAN Config - [PLC2	CAN-V-1-3]				- 🗆 ×
I File Edit PLC View To	ool Windows Help				_ 8 ×
			12		
) 🎖 🖪 🖪 🖸		1 ?		
station (0)	CAN BUS (O) mostor system (NODE T		Device Catalog	₽×
1 CPU H226XLS). master system (dobr 1	D.T. BROD IMIE	🖻 💼 Digital N	Nodules 🔺
2				- 🔤 Unive	ersal Moc
3	2)5827	70 🔚 (3) 810	(4)OTHERS	- 🔲 SM 2	221 8DI
3				- 🔤 SM 2	221 16DI
4			U 🖉 🖉	- SM 2	221 32DI
5					22 800
6					22 1000
7					22 3200 23 4DI/4
8				SM 2	23 8DI/8
				SM 2	223 16DI/
				🖃 💼 Analog I	Modules
			<u>-</u>	🔤 Unive	ersal Moc
			<u> </u>	- 🔲 SM 2	231 AI2
Module Name	Module Type	DI	DQ 🔺	🔲 SM 2	231 AI4
1 (2)SM277C	8DI/6DQ	I:1616	Q:1616	- 🔲 SM 2	231 AI8
2 SM 223 8DI/8DO	8DI/8DQ	I:1717	Q:1717	- E SM 2	232 AO2
3 SM 221 8DI	8DI	I:1818		- SM 2	232 AO4
4 SM 231 AI4	4AI				235 AI4/A
5			_		
6			_		
7					_
					<u> </u>
					11.

Figure 6-8 Configure slave

Modify the I/O Configuration

MagicWorks PLC V2.08 and above supports user-defined Start Address for I/O and adds V Memory image to allow users select Memory image. Double-click the non-blank line to pop-up this dialog:

॑॑॑॑॑॑॑॑॑॑॑॑॑॑॑A I/O Configura	ation - Slave (2)			×
Address / ID	1			,
I/0:	In-output	Y		
Input	Address	Length	Unit	
Start:	16	1	- Bytes	-
End:	16			
Memory image:	CPU I	,	•	
- Output	Address	Length	Unit	
Start:	16	1	- Bytes	-
End:	16			
Memory image:	CPU Q		•	
🔽 Clear outp	ut when PLC transit	ions from RUN to S	TOP	
	OF	Cano	cel	Help

Figure 6-9 I/O configuration

You can modify the Start and End Addresses for Module I/Os and Memory image, the latter is related with R/W attributes for currently selected parameters:

Digital Input: Image to CPU I Memory and V Memory;

Digital Output: Image to CPU Q Memory and V Memory;

Analog Input: Image to CPU AI Memory and V Memory; Analog Output: Image to CPU AQ Memory and V Memory;

Table 6-2 Valid a	ddress range for N	Memories
-------------------	--------------------	----------

Memory	Address range
I	IB16~IB79
Q	QB16~QB79
AI	AIW64~AIW386
AQ	AQW64~AQW386
V	VB0~Vmax

Important Note: For specified modules, the I/O Type and Length cannot be modified unless the module type is Universal Module. The system would check the validity automatically for selected address. If corresponding module type cannot be found under SM277C, you can add Universal Module and make custom settings.

4) Configure Parameters for Slave CT E10

Click the Device Tree to open the various parameter types under CT E10, select required parameters and add them into module list. After that the minimal available I/Q addresses would be assigned automatically, you can modify that by double-clicking.

墨	EasyCAN Config - [PLC2 -	- CAN-V-1-3]				_ 🗆	×
뮮	<u>File Edit PLC View To</u>	ol <u>W</u> indows <u>H</u> elp				_ 8	×
	6 🛱 🖗 🖨 🔇	🔀 🖻 🛍 🖸	ੈ ▲ 🔻 ⊅	• ■ \^ ?			
st 1 2 3 4 5 6 7 8	ation (0)	CAN BU	5(0): master system M277C	NODE ID:1 BAUD RA		Device Catalog 6 EM277C SM277C SM277C SM277C Call System Parameter Call Control mo Call Control mo C	
					Ľ	 B Torque limit 9 Zero-speed 	:
	Module Name	Module Type	DI	DQ		- 🗖 10 RS485 bau	1
1	(3)E10				-	11 CANopen	
2	0 Communication add	16DI	V:01			- 12 Communic	
3	8 Torque limitation co	16DQ		V:23			(
4	134 Set-up the torque	16DQ		V:45		34 CAlvopen	•
5	71 Multi-position mod	16DQ		V:89		T1 Multi-	
6	78 Digital input multipl	16DQ		V:67	-		
7					_	12 External in	
Ľ					•		
							1

Figure 6-10 Configure slave E10

Modify IO Configuration

Double-click any parameter in the module list, the following dialog appears:

I/O Configura	tion - Slave (3)	>
Address / ID		
I/0:	Read	
Input	Address Length Unit	
Start:	0 2 📩 Bytes 💌	
End:	1	
Memory image:	СРИ И 💌	
	OK Cancel Help	

Figure 6-11 I/O configuration

I/O: Set the Read/Write attribute for parameters.

Start

- Address: set the Start address for parameters.
- Length: use Default value, not editable.
- Unit: use Default value, not editable.

End: Use the value calculated by system.

Memory image: Select the Memory image type for CPU, the available type is related with I/O Read/Write type.

5) Configure Parameters for Third-party Slave

MagicWorks PLC V1.73 and above supports the third-party CANopen slave configuration, click to expand the Device Tree on the right, open OTHERS slave node to select required parameters and add them into module list. After that the minimal available I/Q addresses would be assigned automatically, you can modify that by double-clicking.

🚠 EasyCAN Config	g - [PLC2 CA	N-V-1-3]						_	
<u> </u>	<u>V</u> iew <u>T</u> ool <u>I</u>	<u>W</u> indows <u>H</u>	lelp						- 8 ×
		(🕅 🛍	🕞 🔺	=		2			
				• • • •		•			
station (D)		CJ	AN BUS(O): ma	ster system	(NODE ID:	1 BAVD RA	.T:	Device Catalog	
1 🔚 СРИ Н226Х	ils –				_		•	🕀 💼 Master	
2							_	Slave	
3			(2)SM277C	(3)E10	1	(4)OTHERS	1	EM2//C	
4				B. I					
5				6	×				m Parar
5		<u></u>							niversal
7									
/									
8									
							–		
Module Name	e Mo	odule Type	D			DQ	-		
1 (4)OTHERS							- 1		
2 Par-2000_1	160	Q				V:101	1		
3 Par-2000_2	160	DI	V:	1213					
4 Par-2000_3	160	DI	V:	L415					
5									
6							-		
7							<u>ل</u> ے .		- FI
									<u> </u>
									11

Figure 6-12 Configure third-party slave

Modify IO Configuration

Double click any parameter in the module list, the following dialog appears:

Address / ID I/O: Write Index Ofex): 2000 Sub-Index Ofex): 1 Output Address Length Unit Start: 10 2 Bytes End: 11 Memory image: CPU V Clear output when PLC transitions from RUN to STOP	I/O Config	uration - Slave (4)		
<pre>I/0: Write ▼ Index (Hex): 2000 Sub-Index (Hex): 1 Output Address Length Unit Start: 10 2 ÷ Bytes ▼ End: 11 Memory image: CPU V ▼ V Clear output when PLC transitions from RUN to STOP</pre>	Address / I	ם		
Output Address Length Unit Start: 10 2 Bytes End: 11 Memory image: CPU V V Clear output when PLC transitions from RUN to STOP	I/0:	Write	•	
Output Address Length Unit Start: 10 2	Index (Hex) :	2000	Sub-Index (Hex): 1	
Output Address Length Unit Start: 10 2 Bytes End: 11 Memory image: CPU V V Clear output when PLC transitions from RUN to STOP				
Output Address Length Unit Start: 10 2 ÷ Bytes ▼ End: 11 Memory image: CPU V ▼ ✓ Clear output when PLC transitions from RUN to STOP				
Output Address Length Unit Start: 10 2 ÷ Bytes End: 11 Memory image: CPU V Clear output when PLC transitions from RUN to STOP				
Output Address Length Unit Start: 10 2 * Bytes End: 11 Memory image: CPU V Clear output when PLC transitions from RUN to STOP				
Output Address Length Unit Start: 10 2 2 Bytes End: 11 Memory image: CPU V Clear output when PLC transitions from RUN to STOP				
Address Length Unit Start: 10 2 ÷ Bytes End: 11 Memory image: CPU V Clear output when PLC transitions from RUN to STOP				
Start: 10 2 * Bytes End: 11 Memory image: CPU V • Image: CPU V •	-Output			
End: 11 Memory image: CPU V 🔹	-Output	Address	Length Unit	
Memory image: CPU V	-Output	Address 10	Length Unit	Y
Clear output when PLC transitions from RUN to STOP	-Output Start: End:	Address 10 11	Length Unit 2 JBytes	Ţ
	-Output Start: End: Memory ima;	Address 10 11 ge: CPU V	Length Unit 2 * Bytes	Y
•	-Output	Address 10 11 ge: CPU V 11put when PLC tra	Length Unit 2 ÷ Bytes	7

Figure 6-13 I/O configuration

I/O: Set the Read/Write attribute for parameters.

Index(Hex): Main index for selected slave parameter.

Sub-Index(Hex): Sub index for selected slave parameter.

Start

- Address: Set the Start address for parameters.
- Length: It's required for Total length of configured R/W data is multiple of 4.
- Unit: Use Default value, not editable.

End: Use the value calculated by system.

Memory image: Select the Memory image type for CPU, the available type is V and Q.

Clear output when PLC STOP: Check this option to clear the contents in image address; or else the contents remain unchanged.

Notice

• For valid address range, refer to Table 6-2;

• The EDS Importing for third-party slave is not supported currently, please refer to the related product manuals for inputting main index and sub index;

• In actual connection. If the third-party slave has detected error, the corresponding SMB information area would display : 0x7 configuration parameter error;

• For details of Cotrust Servo Drives, please visit at http://www.co-trust.com

4. Connection and Configuration of Hardware

Connect CPU H226XL with PC by using communication cable (the USB end connects to the USB socket of PC, the RS485 end connects to the RS485 port of CPU H226XL).

> Connect the CAN port on CAN-01 board of CPU to the CAN port of SM277C by using communication cable.

> Set the DIP switch referring to the Table 6-3: Communication rate is 1000kbps, Node ID is 4.

Figure 6-3 DIP switch selection

DIP7-DIP1 (Node address): in binary, MSB - DIP7, LSB - DIP1.

DIP10-DIP8 (Baud rate): in binary, MSB - DIP10, LSB - DIP8.

Notice

0 is the global address, which is forbidden while using.

DIP10	DIP9	DIP8	Communication rate (kbit/s)	Max distance(m)
OFF	OFF	ON	20	2500
OFF	ON	OFF	50	1000
OFF	ON	ON	125	500
ON	OFF	OFF	250	250
ON	OFF	ON	500	100

Table 6-3 DIP switch configuration

ON	ON	OFF	800	50
ON	ON	ON	1000	25

DIP11 (Terminal resistance): Set as ON only if the device is the last one in the device ring. DIP12: Reserved.

Attach the SM223 8DI/8DO, SM221 8DI and SM231 AI2*16BIT modules after the extended port of SM277C.

- > Then check and confirm the wiring correctly.
- > Switch on the power supplies for various devices in the system.

5. Save the current project after CANopen configuration completed, compile it in the EasyCAN configuration interface, download the CANopen configuration into PLC.

6. CPU H226XL has extended 64Byte I /64Byte Q / 162Words AI / 162 Words AQ Memory for CANopen as the Address image of each module. The I/Q Address of modules in EasyCAN configuration shows in the following figure.

	Module Name	Module Type	DI	DQ	<u> </u>
1	(2)SM277C	8DI/6DQ	I:1616	Q:1616	
2	SM 223 8DI/8DO	8DI/8DQ	I:1717	Q:1717	
3	SM 221 8DI	8DI	I:1818		
4	SM 231 AI4*12Bit/16Bit	4AI			
5					
6 ₹					•

Module

After configuration, you can monitor the I/Os for SM277C, SM221 8DI, SM223 8DI/8DO and SM231 AI4*12Bits/16Bits, as shown in the following:

	Address	Format	Current Value	
1	Q16.0	Bit	2#1	
2	Q16.1	Bit	2#1	
3	Q16.2	Bit	2#1	6 Outputs for SM277C(016 0~016 5)
4	Q16.3	Bit	2#1	
5	Q16.4	Bit	2#1	
6	Q16.5	Bit	2#1	
7	Q17.0	Bit	2#0	
8	Q17.1	Bit	2#1	
9	Q17.2	Bit	2#1	
10	Q17.3	Bit	2#0	
11	Q17.4	Bit	2#0	8 Outputs for SM223 8DI/8DO(Q17.0~Q17.7)
12	Q17.5	Bit	2#1	
13	Q17.6	Bit	2#1	
14	Q17.7	Bit	2#1	
15	Q18.0	Bit	2#0	
16	Q18.1	Bit	2#0	
17	Q18.2	Bit	2#0	
18	Q18.3	Bit	2#0	8 Inputs for SM231 8DI(18.0~118.7)
19	Q18.4	Bit	2#0	,
20	Q18.5	Bit	2#0	
21	Q18.6	Bit	2#0	
22	Q18.7	Bit	2#0	
23	AIW64	Signed	-32768	
24	AIW66	Signed	-32768	4 Inputs for SM231 44I(4IW/64~70)
25	AIW68	Signed	-32768	+ inputs for Sivi251 4Ai(Aiwo4-70)
26	AIW70	Signed	-32768	

6.1.4 Diagnosis

Use indicator of SM 277C/E10 and MagicWorks PLC SMB status word to diagnose CANopen master-slave network.

Diagnose by hardware

SM277C LED status

After powered, the POWER LED of SM 277C indicating "ON" (green) will light up.

If the BF and SF LED lights remain off, then SM 277C is functioning normally.

If the BF or SF LED lights up or flickers, there is an error in hardware configuration or wiring. If the operation of the main system is trouble-free, the cause of the error can be referred to the following table:

LED	On	Off	Flicker	Note
ON	Power on	No power		Power
ON				indicator
SE.	IO expansion	IO expansion		System
Эг	module no error	module no error		error
BF	No CAN network	No CAN network	Inconsistent configuration	Bus error

Table 6-4 SM 277C LED function

E10 CANopen communication indicator light

If the slave station connect to E10 servo, the E10 CANopen communication indicator light keep off before the communication connection. The indicator light on if the communication succeed, indicating that the CANopen communication is normal., the CANopen communication indicator light turn off if the CANopen communication is abnormal.

E10 CANopen communication indicator light:

Diagnose by MagicWorks PLC

CTH200 series PLC is allocated with 100 bytes SM. Users can get error information by viewing status bytes. The meaning of CAN site status word is shown in the following table:

	Byte	Address distribution	Status value explanation
			0x00: Initialize
			0x01: Disconnect
		SMB550: CAN communication	0x04: Stop
		status of master station(CPU)	0x05: Run
			0x7f: Pre-run
			0xff: Configuration data error
			0x00: Initialize
		SMB551-SMB582: CAN	0x01: Disconnect
		communication status of 1~32	0x04: Stop
		slave station(Node ID from	0x05: Run
		small to large)	0x7f: Pre-run
			0x7: Configuration parameter error
SMB	100		bit7: IO information configuration
(status)	100		compare with 277C reality:
			0: No error
			1: Error
			Bit6-Bit0:
		SMB583-SMB614: Run	277C IO expansion module
		warning of 1~32 slave station	diagnostic information bit0 indicate
		(Node ID from small to large)	the first module, bit6 indicate
			seventh module:
			0: No warning
			1: Warning
			(Above is the definition of 277C
			slave station different from others)
		SMB615-SMB649	Reserved

Table5-22 CAN station status table

Note

SMB550-SMB649 is read-only memory, user cannot write

6.2 Modbus TCP Communication

This Guide leads users to create an application by using a specific instance, thus can help users understand the Modbus TCP communication function of CTH200.

In the Modbus TCP communication network, with CPU as Slave, the communication is independent with the whole cycle period; with CPU as Master, the Receiving / Sending is controlled by user program.

When using the EtherNET port for Modbus TCP communication, CTH200 PLC can serve as Modbus TCP slave directly without any configuration, the default port number is 502 and if you need to modify IP address, please refer to Chapter 2 *Getting Started*.
When CTH200 PLC serve as Modbus TCP master to communicate with other slaves, you need to use Modbus TCP Wizard or Ct_Mbus_master_tcp_single library to configure the master communication.

Notice

Please refer to "*MaigcWorks PLC user Manual*" for how to use the Modbus TCP Wizard and Ct_Mbus_master_tcp_single library. The related Manuals and Library files can be downloaded from http://www.co-trust.com/.

6.2.1 Components

Table 6-6 Example components

Components	Description		
Program Device	Installed with MagicWorks PLC (V2.08 and above), used for CTH200 PLC		
PG\PC	configuration, programming and debugging.		
CDU	Two CTH200 PLC, one for Modbus_TCP master, the other for Modbus_TCP		
CFU	slave, they communicate with each other via EtherNET port.		
Standard	 connect CTH200 PLC and Program device 		
Network Cable	 connect PLC (Modbus_TCP master) and PLC (Modbus_TCP slave) 		

6.2.2 Network Connection

Connect Program device with CTH200 PLC by standard network cable, then use the CT_Modbus_TCP library from COTRUST to program the Modbus master (CTH200):

PC with Magicworks PLC

Connect Modbus_TCP master with slave by standard network cable, the master will write and then read data from specified address to the slave to realize the Modbus TCP communication:

Notice

CPU H224X/H226XL/H228XL not support adaptive crossover, thus the PLC should use Crossover Cable to implement ModBus_TCP.

6.2.3 Operating Steps

Step 1: Connection

Connect PC with Modbus_TCP master with a standard network cable.

Step 2: Set Communications

Create a new project in MagicWorks PLC and add a CTH200 station, refer to chapter 2.2 *Communicate with CTH200* PLC Communication Settings to establish a communication connection between CTH200 PLC and PC.

Step 3: Program for the Modbus master (CTH200 PLC)

1) Open the Program Block in MagicWorks PLC to program for the Modbus_TCP master. You can use either Ct_Mbus_master_tcp_single library or Modbus TCP Wizard, here are MBTCPS_EXE instruction from Ct_Mbus_master_tcp_single library as example:

Network 1 Network Title				
Network Comment: MODBUS master started from 40001 of MODBUS s	Network Comment: MODBUS master writes 120 bytes of data started from VBO into memory started from 40001 of MODBUS slave (IP 192.168.1.100)			
 	MBTCPS_EXE:FCO EN			
SMO. 0	Run			
1-0	CmdInd Done-L18.0			
192-S	SlaveI~ Active-L18.1			
168 - 5	SlaveI~ Error-L18.2			
1-5	SlaveI~ ErrorC~LB19			
100 - S	SlaveI~			
1 - F	RW			
4001 - F	Remote~			
120 - 0	Count			
&VBO-I	LocalD~			

<Note> If multiple R/W operations need to be configured, it's recommended to use the Modbus TCP Wizard in the MagicWorks PLC. For details, refer to *Magicworks PLC User Manual*.

2) When finishing program, compile and download it into Modbus_TCP master device.

Symbol	Variable	Data	Description
Symbol	type	type	Description
EN	IN	BOOL	Enable instruction
RUN	IN	BOOL	Start communication, edge triggered
Cmdladov	INI	DVTE	number for calling MBTCPS_EXE, which cannot
Cindindex	IIN	DTIE	be repeated, valid range 1~255
SlavelP0	IN	BYTE	1st byte of the slave address
SlavelP1	IN	BYTE	2nd byte of the slave address
SlavelP2	IN	BYTE	3rd byte of the slave address
SlavelP3	IN	BYTE	4th byte of the slave address
SlavePort	INI	WORD	Monitored port of slave, if the slave is a CTH200
Slaveroit	IIN	WORD	PLC, then the port is default as 502.
RW	IN	BYTE	Read = 0; Write = 1
RemoteAddr	IN	DWORD	ModBus Address (default as 40001)

The following table is the definition of MBTCPS_EXE instruction

Count	IN	WORD	No. of elements (1-120 words or 1-1920bits)
LocalDataptr	IN	DWORD Local data pointer (such as &VB1000)	
Done	OUT	BOOL	Done flag (0 = Undone; 1 = Done)
Active	OUT	BOOL	Instruction activation (0 = Active; 1 = Inactive)
Error			0: No error
EIIOI	001	DTIE	1: Error
Freecode			Error code, valid when Done = 1
Enorcode			Details refer to the following List.

Definition of output Error code:

Error Code	Description		
0	No error		
1	Reached the max number of connections		
2	Establishing connection		
3	Timeout error		
4	Error with requested parameter		
5	Instruction not enabled		
6	Connection is busy handling other request		

Step 4: Modbus TCP master interconnect with its slave

When configuring Modbus TCP slave, the slave IP must be corresponding with IP set by master. If you need to modify IP address of the slave, open the System Block in Magicworks PLC as following figure to operate here.

Additionally, for ModBus TCP communication between PLC, it's required that the port number of slave should not less than 1024.

🙁 System Block		×
 System Block Communication Ports Retentive Ranges Password Output Tables Input Filters Pulse Catch Bits Background Time EM Configurations Configure LED Edit in Run 	PPI Ports TCP/IP Port You can adjust the TCP/IP port parameter communicate to the attached PLC. Network C Automatic Assigned IP (© Use the Following IP IP: 192 168 1 202 Port: 20000 Gateway: 192 168 1 1 C Automatic Assigned DNS (© Use the Following DNS DNS: 8 8 4 4 Alt DNS: 8 8 8 8	rs that MagicWorks PLC will use to Defaults ✓ Enable Remote Control Device Name: CTS7 21X Domain: mico. co-trust. com ▼ Server Port: 8888 ÷ Alt Domain: mico. co-trust. com ▼ Company ID: CO_TRUST Claim Password: ●●●●●●●● Verify: ●●●●●●●●●
Configuration must be downloaded	before taking effect. OK	Cancel Default All Help

Step 5: Debug

Following the above orders to connect the master and slave, then read out 120 data started from

Modbus_TCP address from 40001 in the state table of MagicWorks PLC. Same content with data in the memory for Modbus_TCP master means successful Modbus TCP communication.

6.2.4 ModBus TCP Slave Address Mapping

ModBus address is consist of Data Type and 5~6 character values of the offset. The first 1 or 2 is Data Type, others are values conforming to the data type. ModBus-TCP slave support the following addresses:

ModBus slave address	CTH200 address
000001	Q0.0
000002	Q0.1
000003	Q0.2
000127	Q15.6
000128	Q15.7
010001	10.0
010002	10.1
010003	10.2
010127	115.6
010128	115.7
030001	AIW0
030002	AIW2
030003	AIW4
030032	AIW62
040001	VW0
040002	VW0+2
04xxxx	VW0+2 x (xxxx-1)

Address Image of slave to TCP protocol

6.3 UDP_PPI Communication

This section show you an application of CTH200 UDP_PPI communication (EtherNET Port).

In the UDP_PPI network, CPU works as master which is independent with the whole cycle period; and the Receiving / Sending of message is controlled by user program.

When using the EtherNET port for Modbus TCP communication, CTH200 PLC can serve as Modbus TCP slave directly without any configuration, the default port number is 502 and if you need to modify IP address, please refer to the Chapter 2 *Getting Started*.

The CTH200 PLC can serve as UDP_PPI master or slave to communicate with other devices in the same LAN by using NETW/NETR or UDP_NETR/UDP_NETW instructions. The CTH200 PLC can also be used as slave of HMI in the UDP_PPI network.

Notice

For details about how to use NETW/NETR Wizard, please refer to *"MaigcWorks PLC user Manual"*. The related Manuals and Library files downloaded address: http://www.co-trust.com.

6.3.1 Components

Table 6-5 UDP_PPI example components

Components	Description		
Program Device	Installed with MagicWorks PLC (V2.08 and above), used for CTH200 PLC		
PG\PC	configuration, programming and debugging.		
CDU	Two CTH200 PLC, one for UDP_PPI master, the other for UDP_PPI		
CPU	slave, they communicate with each other via EtherNET port.		
Ctondord	Connect the CTH200 PLC with PG/PC		
Network Cable	Connect CTH200 PLC (UDP_PPI master) with CTH200 PLC (UDP_PPI		
	slave)		

6.3.2 Network Connection

Connect the PG\PC with CTH200 with standard cable to be used for UDP_PPI master (CTH200 PLC) programming:

Connect UDP_PPI master and its slave with standard network cable, UDP_PPI master writes data from specified address to the UDP_PPI slave, then read data from UDP_PPI slave, thus realize the UDP_PPI communication:

Notice

CPU H224X, H226XL and H228XL do not support adaptive crossover, thus a crosswire should be used for UDP_PPI communication.

6.3.3 Operating Steps

Step 1: Connect cable

Using a standard cable to connect the PC with UDP_PPI master (CTH200).

Step 2: Set communication

Create a new project in MagicWorks PLC and add a CTH200 station, refer to chapter 2.2 *Communicate with CTH200* PLC Communication Settings to establish a communication connection between CTH200 PLC and PC.

Step 3: Program for UDP_PPI master (CTH200)

There are two methods to Read/Write the UDP_PPI Master.

Using UDP_NETR/UDP_NETW Instructions to program for the UDP_PPI Master Parameter table for UDP_NETR/UDP_NETW Instruction:

D	А	Е	0	Error Code	0
The 1st byte	for IP Addres	S			1
The 2nd byte	e for IP Addres	s			2
The 3rd byte	e for IP Addres	S			3
The 4th byte	for IP Addres	S			4
The upper b	yte for port nu	mber			5
The lower by	/te for port nur	nber			6
The 1st byte for remote station pointer <i, db="" m,="" q,="" v,=""> (4 bytes)</i,>					7
The 2nd byte for remote station pointer					8
The 3rd byte for remote station pointer					9
The 4th byte for remote station pointer					10
Data length					11
Data byte 0				12	
Data byte 1					13
Data byte 199					211

D: Done (Function completely), 0= No, 1=Yes

A: Active (function sequence), 0=No, 1=Yes

E: Error, 0=No, 1=Yes

The lower 4 bits of the 1st byte is error code, defined as following:

Error Code	Description
0	No error
1	Timeout Error; no response from remote station
2	Receive error; validation, frame or checksum error in the response
3	Offline error; duplicate address or Conflicts resulted by hardware fault
4	Queue overflow error; activated more than 8 UDP_NETR/UDP_NETW
4	block
6	illegal parameter; UDP_NETR/UDP_NETW table contains an illegal or
0	invalid value
7	No resources; the remote station is busy (uploading or downloading
7	sequences)
8	Error in layer 7; violate the application protocol
9	Information error; Data address error or Data length incorrect

Network2: Read the 200 bytes data from the UDP_PPI slave (IP: 10.1.3.251, started from: VB101) into UDP_PPI master (started from: VB22).

2) Program the UDP_PPI master by NETR/NETW-UDP instruction Wizard

Select "wizard" in the subordinate options of CTH200, then double click "NETR/W-UDP wizard" to open a dialog box for configuration. After that, call FC in network of OB1:

3) After editing the program, compile and download it into UDP_PPI master (must be called by SM0.0).

Step 4: UDP_PPI master communicates with slave

1) Power up the UDP_PPI master and slave.

2) Connect the EtherNET ports of UDP_PPI master and slave for communication.

6.3.4 UDP_PPI Slave Address Mapping

The normal NETR/NETW instruction is used for UDP_PPI communication, kinds of registers can be configured and the Address Image for slave is direct mapping.

6.4 Analog I/O Expansion Board

CTH200 series CPU can be equipped with Analog I/O Expansion Board. The board embedded in to master CPU via bus connection. It provides collected analog signals, processing results and diagnostic information for CPU by bus interface, then the master CPU will process these data based on specific user program and send Digital data to related expansion modules, which can control the size of analog signals.

There are two methods to access Analog Board: calling dedicated expansion instruction library or Access SM memory directly.

6.4.1 Installation Notes

Dismantling the up cover plate on CPU as shown in the gray box of following figure, align the pins of expansion board to fix it, then cover the up plate, cautions for these operations.

CTH200 CPU

For terminal connections between Analog Expansion Board and CPU, please refer to chapter *4.10.1 Analog Expansion Board Specifications*.

6.4.2 Expansion Board Access Address

The usage for Analog expansion board is different with CAN-01 board which can be used directly by inserting, but it must use dedicated instructions or special SM memory.

• Access SM area directly

SMW116~SMW126 of CPU is used for Analog image of expansion board. First with AI, 4 words started from SMW116; then with AQ, 2 words from SMW124.

2AI/1AQ: SMW116 for AIW0, SMW118 for AIW2, SMW124 for AQW0

Function Image address Function Image address

A+ input	SMW116	Module type	SMB114
B+ input	SMW118	Module status	SMB115
VO output	SMW124		

4AI/2AQ: SMW116 for AIW0, SMW118 for AIW2, SMW120 for AIW4, SMW122 for AIW6, SMW124 for AQW0, SMW126 for AQW2

Function	Image address	Function	Image address
A+ input	SMW116	V0/I0 output	SMW124
B+ input	SMW118	V1/I1 output	SMW126
C+ input	SMW120	Module type	SMB114
D+ input	SMW122	Module status	SMB115

SMB115 Module status defined as in the following table:

Name	Function	Value	
		0x1E: 4AI/2AQ	
Module type	With module	0x19: 2AI/1AQ	
		0x20: CAN expansion board	
	No module	0x00	
	Normal	0x00	
	Communication error	0x01	
Module status	Calibration failed	0x02	
	Access error	0xFF	

• Calling expansion instruction library

Users can use the Magicworks PLC dedicated library Exboard_H200 to access expansion board, you can down load it from our website. For information about how to import this library, refer to appendix *A Using CT-MODBUS Master and Slave Libraries*.

Table	6-6	expansion	instructions
10010	00	onparioion	

Write Acces	S		Read Access		
Name: ExBoard_WriteAq Na		Name: ExBoar	Name: ExBoard_ReadAi		
	ExBoard_Wri~:FCC -EN -Ch Sta -AQ_W			Exboard_Rea~:FC1 -EN -Ch Sta Ai_W	
Symbol	variable type	Data type	Symbol	variable type	Data type
Ch	IN	BYTE	Ch	IN	BYTE
AQ_W	IN	WORD	Ai_W	OUT	WORD
Sta	OUT	BYTE	Sta	OUT	BYTE
Comments					
Ch: channel number, value: 0		Ch: channel number, value: 0~1			
AQ_W: AQ value		Ai_W: Ai value			
Sta: 0 - norm	al; -1 - error		Sta: 0 - normal; -1 - error		

Example

	Ladder diagram	STL and program comments
SMO.0	fxBoard_Wri~:FCC	LD SM0.0
	EN	CALL ExBoard_WriteAq, 0, VW1360, MB15
•	0-Ch Sta-MB15 1/W1360-A0 W	CALL Exboard_ReadAi, 0, MB16, VW1362
	7111300 Ne_1	CALL Exboard_ReadAi, 1, MB17, VW1364
	fxboard_Rea~:FC1 EN	// enable the board to program
		// call the ExBoard_WriteAq, write the AQ of
	U-Ch Sta-MB16 Ai_W-VW1362	Ch 0, store the status value into MB15
		// call the Exboard_ReadAi, read the Ai of Ch
	EN	0, store the status value into MB16
	1-Ch Sta-MB17	// call the Exboard_ReadAi, read the Ai of Ch
	Ai_W-VW1364	1, store the status value into MB17

6.5 Recipe and Data Log

6.5.1 Recipe

MagicWorks PLC software as well as CPU H224X, H226XL and H228XL support recipe. MagicWorks PLC provides the Recipe Wizard to help you organize define recipes.

All recipes are stored in the memory card instead of the PLC. Therefore, to use the recipe feature, it is a must to insert an optional 64kB or 256kB memory card to the PLC.

A recipe, however, will be read into PLC memory when the user program is dealing with it. There may be, for example, chocolate chip, sugar, and oatmeal for cookies recipes. But only one type of cookies can be made at a time, thus you must select proper recipe to read into PLC memory.

Figure 6-16 illustrates a process for making multiple types of cookies using recipes. Each recipe for cookie is stored in the memory card. The operator selects which type of cookie to make on TP10 text display, and the user program reads that recipe into memory.

Figure 6-16 Example of Recipe Application

Recipe Definition and Terminology

The following definitions and terms help you understand the Recipe Wizard.

1. Recipe construction is the set of project components generated by the Recipe Wizard, concluding instruction subroutines, data block tabs, and symbol tables.

2. Recipe setting is a collection of recipes that have the same parameters set. However, the parameters value can vary from the recipe.

3. Recipe is the set of parameter values that provides the information of producing a product or controlling a process.

For example, recipe definitions can be different, such as donuts and cookies. And the cookie recipe definition may contain many different recipes, such as chocolate chip and sugar cookies. Example fields and values are shown in the following table.

Filed Name	Data Type	Chocolate_Chip (recipe 0)	Sugar (recipe 1)	Comment
Butter	Byte	8	8	Ounces
White_Sugar	Byte	6	12	Ounces
Brown_Sugar	Byte	6	0	Ounces
Eggs	Byte	2	1	each
Vanilla	Byte	1	1	Teaspoon
Flour	Byte	18	32	Ounces
Baking_Soda	Real	1.0	0.5	Teaspoon
Baking_Powder	Real	0	1.0	Teaspoon
Salt	Real	1.0	0.5	Teaspoon
Chocolate_Chips	Real	16	0.0	Ounces
Lemon_Peel	Real	0.0	1.0	Tablespoon
Cook_Time	Real	9.0	10.0	Minutes

Example of Recipe Definition -- Cookies

Using the Recipe Wizard

Use the Recipe Wizard to create recipes, stored in the memory Card, and its set. Recipes and its definitions can be entered directly in the Recipe Wizard. Later changes to individual recipes can be made by running the Recipe Wizard again or by programming with the RCPx_WRITE instruction subroutine:

1. A symbol table for each recipe definition. Each table includes symbol that has the same name as the recipe field names. These symbols define the V memory addresses to access the recipe values currently loaded in memory. Each table also includes a symbolic constant to reference each recipe.

2. A data block tab for each recipe definition. This tab defines the initial values for each V memory address represented within the symbol table.

3. A RCPx_READ instruction subroutine. This instruction is used to read the specified recipe from the memory card to V memory.

4. A RCPx_WRITE instruction subroutine. This instruction is used to write recipe values from V memory to the memory card.

Defining Recipes

Select the Tools > Recipe Wizard menu command to use it to create a recipe. The first screen is an introductory screen defining the basic operations of the recipe wizard. Click on the Next button to begin configuring your recipes. To create a recipe definition, follow the steps below. See Figure 6-17.

1. Specify the field names for the recipe definition. Each name will become a symbol in your project as previously defined.

2. Select a data type from the drop down list.

3. Input a default value, for all new recipes specified within this definition to begin with, and comment for each name.

4. Click "Next" to create and edit recipes for this recipe definition.

t 🔺
-1
<u> </u>

Figure 6-17 Defining Recipes

Use as many rows as necessary to define all data fields in the recipe. You can have up to four different recipe definitions. The number of recipes for each definition is limited only by the available space within the memory card.

Creating and Editing Recipes

Window of creating and editing recipes allows you to create single recipe and allocate value for it. Each editable column represents a unique recipe.

Click "Add Recipe(s)" to add a new one. Each recipe takes the default, which assigned when creating recipe set, as initial value. Another way to create a new recipe is to right click the existing recipe column to choose to paste or insert one.

Each new recipe will be given a default name, in form of DEFx_RCPy, refer to the recipe definition and number.

To create and edit recipes, follow the steps below. See Figure 6-18.

- 1. Click "Next" to the "Create and Edit Recipe" interface.
- 2. Select "New" to insert a new recipe.
- 3. Rename an appropriate name in replace of the default one.
- 4. Change the values in each recipe data set as needed.
- 5. Click "Next".

nt
nt

Figure 6-18 Creating and Editing Recipes

Allocating Memory

In the interface of "Allocate Memory" you can assign the V memory's beginning address where you start to store the recipes read from memory card. You can either select the V memory address yourself or use the one, with correct length as well as unused, recommended by recipe wizard. To allocate memory, follow the steps below.

1. To select the V memory address where you want the recipe to be stored, click the window and enter the address.

2. To let the Recipe Wizard select an unused V memory block of the correct size, click the "Suggest Address".

3. Click the "Next".

🕗 Recipe Wizard	×
Allocate Memory Use this page to specify the V-Memory block that will be used by this recipe configuration	3
Memory required is 27 bytes.	
The wizard can suggest an address the represents a block of V-memory of the correct size.	
Suggest Address VBO through VB26	
Click Here for Help and Support Prev Next Cancel	L

Figure 6-19 Allocating Memory

Project Components

The different components to be added to project are listed in the "Project Components" page as figure 6-20, click "Finish" to add. Each recipe configuration owns a unique name with recipe set name(RCPx) at the end in project tree.

Figure 6-20 Project Components

Using the Symbol Table

Create a symbol table using general value to indicate recipe for each recipe set. Use these symbols to indicate the recipes you want in instruction RCPx_READ and RCPx_WRITE as figure 6-21. As each domain owns a symbol name given by table, you could also visit the recipe value in V memory with these symbols.

an Syn	Symbol Editor - [RCP0_SYM CAN-V-1-3\PLC1]						
<u>a Symbol Table</u> Edit Insert <u>V</u> iew <u>W</u> indow <u>H</u> elp							
D ⊟ B B ⊲ 0 × 0 B V V N?							
	status $-\nabla$	symbol	address				
1		DEF0_RCP0	0				
2		Butter	VB0	Ounces			
3		White_Sugar	VB1	Ounces			
4		Brown_Sugar	VB2	Ounces			
5		Eggs	VB3	Each			
6		Vanilla	VB4	Teaspoon			
7		Flour	VB5	Ounces			
8		Baking_Soda	VD6	Teaspoon			
9		Baking_Powder	VD10	Teaspoon			
10		Salt	VD14	Teaspoon			
11		Choclate_chips	VB18	Ounces			
12		Lemon_peel	VD19	Teaspoon			
13		Cook_time	VD23	Minutes			

Figure 6-21 Symbol Table

Downloading the Project with a Recipe Configuration

To download a project which contains a recipe configuration, following the steps below. See Figure 6-22.

- 1. Select File > Download.
- 2. Ensure to check the Program Block, Data Block, and Recipes boxes in the dialog.
- 3. Click the "Download".

🕐 Download			×
PPI connection			
Use the Options button to select blocks to	download.		
Remote Address: 10.1.10.66:20000			CPU H226XL REL 02.01
Click Download to begin.			
			—
Less Options		Download	Cancel
Options			
✓ Program Block	To : PLC		
	To : PLC		
CT LIB2	To : PLC		
🗹 Init V Data Block	To : PLC		
System Block	To : PLC		
Recipes			
Data Logs			
EasyCAN Configuration			
Click Here for Help and Support	rt	Close dialog on suc Prompt on RUN to ST(Prompt on STOP to RU	ress DP DI

Figure 6-22 download recipe

Delete Existing Recipe Configurations

Edit existing recipe configurations as steps below. See Figure 6-23.

- 1. Click on the configuration drop down list and select an existing recipe configuration.
- 2. Click on the Delete Configuration button to delete an existing recipe configuration.

😳 Recipe Wizard	×
Select Configurations	
Use this page to select an existing recipe configuration to edit or to create new one	~
The following box lists existing Recipe Configurations in your project. You can select t	•
edit or delete an existing recipe configuration, or select. New to create a new.	
Configuration to edit	
RCP Configuration 0 (RCP 0)	
Delete Configuration	
Click 'Next' to edit this configuration	
Click Here for Help and Support Prev Next Car	icel

Figure 6-23 Editing recipe

Instructions Created by the Recipe Wizard RCPx_Read Subroutine

The Subroutine RCPx_READ created by the Recipe Wizard is used to read an individual recipe from the memory card to the specified area in V memory.

The x in the RCPx_READ instruction means the recipe set number of the recipe that you want to read. High level of EN input enables the execution of the instruction. And the Rcp input identifies which recipe to be loaded from the memory card. The Error output returns the result of the instruction execution. See Table 6-8 for definitions of the error codes.

RCPx_Write Subroutine

The Subroutine RCPx_WRITE created by the Recipe Wizard is used to replace a recipe in the memory card with the contents of the recipe contained in V memory.

The x in the RCPx_WRITE instruction means the recipe set number of the recipe that you want to replace. High level of the EN input enables the execution of the instruction. And the Rcp input identifies the recipe that will be replaced in the memory card.

The Error output returns the result of the execution of this instruction. See Table 6-8 for definitions of the error codes.

RCPx_Read Subroutine	RCPx_Write Subroutine
RCPO_READ: FC2	RCPO_WRITE:FC3
EN	EN
Rcp Error	- Rcp Error-

Table 6-7 Valid Operands for the Recipe Subroutine

Input/Output	Data Type	Operands
Rcp	word	VW, IW,QW, MW, SW, SMW, LW, AC, *VD, *AC, *LD, constant
Error	byte	VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

Table 6-8 Error Codes of the Recipe Instructions

Error code	Description
0	No Error
132	Access to the memory card failed

Notice

The EEPROM used in the memory card will support a limited number of write operations. Typically one million write cycles. Once reach the limit, the EEPROM will not operate properly.

Thus make sure that you do not enable the RCPx_WRITE instruction each scan. Or the memory card will wear out in a relatively short period of time.

6.5.2 Data Log

MagicWorks PLC provides the Data Log Wizard to store process measurement data into memory card. Moving process data to the memory card frees V memory addresses that would otherwise be required to store this data

With this feature, you can permanently reserve the process data log, contains a time date stamp, in program control. Up to 4 independent data log, whose format can be defined by new data record wizard, can be configured.

All data logs are stored in the memory card, to use it, insert an optional 64K or 256K memory card in your PLC. See Appendix O Battery Card and Memory Card for information about the memory cards.

Use the S7-200 Explorer to upload the contents of your data logs to your computer. An example of a Data Log application is shown as Figure 6-24.

Figure 6-24 Example of Data Log Application

Definition and Terminology of Data Log

The following definitions and terms explain you the Data Log Wizard:

1. A data log is a group of records usually ordered by date and time. Each record represents

some process events that record a set of process data. The organization of this data is defined by the data log wizard.

2. A data log record is a single row of data written into data log.

Using the Data Log Wizard

The Data Log Wizard can configure four data logs at most, which is used to:

- 1. Define the format of the data log record
- 2. Select data log'options such as time stamp, date stamp, and clear data log on upload
- 3. Specify the maximum number of records that can be stored in the data log
- 4. Create project code that is used to store records in the data log.

Steps using Data Log Wizard to create a data log:

1. Create a symbol table for each data log which includes symbol names same as that of data log field. Each symbol defines the V memory addresses that store the current data log. Each table also includes a symbolic constant to recognize each data log.

2. A data block tab for each data log record that assigns V memory addresses for each data log field. Your program uses these V memory addresses to accumulate the current log data set.

3. Create a DATx_WRITE subroutine to copy the specified data log from V memory to the memory card. Each execution adds a new data record to the log stored in the memory card.

Data Log Options

You can configure the following options for the data log. See Figure 6-25.

Time Stamp

You can have a Time Stamp in each data log record. Select this option, the CPU will automatically add a time stamp each record when the user program write a data log.

Data Stamp

You can add a Date Stamp to each data log record. When selected, the CPU automatically includes a date stamp with each record when the user program commands a data log write.

Clear Data Log

You can clear all the record in data log after uploading the data. the data log will be cleared each time it is uploaded if you selected this.

Figure 6-25 Data Log Options

Data log is a circular queue (when full, a new record will replace the oldest one). You must specify the maximum number of records, which is 65534 and default as 1000, stored in the data log.

Defining the Data Log

Assign domain, as a symbol in project, as well as its data format for data log. Each data log record contains 4 ~203 bytes of data. Follow the steps below to define the data field. See Figure 6-26.

- 1. Click "Field Name" to enter the name, which is the symbol referenced by the user program.
- 2. Click "Data Type" cell and select a type from the drop down list.
- 3. Click "Comment" to enter a comment,
- 4. Use as many rows as necessary to define a record.
- 5. Click "Next".

Figure 6-26 Define the Data Log

Allocating Memory area

The data log wizard creates a block, a storage address where data log record stored before write into memory card, in the V memory area of PLC. Assign beginning address for the V memory area where you put configuration. You can either select the V memory area address yourself or use the one, with correct length and used, recommended by wizard. The size of the block varies from your choices in the Data Log wizard. See Figure 6-27.

Follow the steps to allocate memory area:

1. To select the V memory address where the data log record will be constructed, click "Suggested Address" to enter the address.

2. For the Data Log Wizard selecting an unused V memory block of the correct size, click the "Suggested Address".

3. Click "Next".

🕐 Data Log Wizard	×
Allocate Memory	
Use this page to specify the V-Memory block that will be used by this data log configuration	UTD
Memory required is 4 bytes.	
The wizard can suggest an address the represents a block of V-memory of the correct size.	
Suggest Address VB27 through VB30	
Click Here for Help and Support Prev Next Can	cel

Figure 6-27 Allocate Memory

Project Components

Different components to be added into your project are listed in "Project Components", as figure 6-28. Click "Finish" to complete the data log wizard and add these components to project. Each data log construction owns a unique name with data log set(DATx) attached at the end.

🕐 Data Log Wizard	×
Project Components This page lists the components that the wizard will generate for use in your program	***
The Data Log Wizard will now create the project components for your selected configuratic and make them available for use by your program. Your current configuration consists of the following project components:	n
FC "DATD_WRITE" Global Symbol Tabel "DATO_SYM" Data Page "DATO_DATA" for the data log configuration at VB27-VB30 The logged data may use up to approximately 13000 bytes in the memory card	
The wixard configuration will be listed in the existing configuration box by name. You ce edit the default name to better identify it. DAT Configuration O	n
Click Here for Help and Support Prev Finish Can	rel

Figure 6-28 Project components

Symbol Table

Create a symbol table, which can be used in DATx_WRITE as well as to visit the value of data log in V memory, for each data log and define some constant to indicate it. Each table create symbol name for the domain in data log.

<mark>€</mark> Syr € <u>S</u> yr	nbol Editor nbol Table	- [D <u>E</u> dit	ATO_SYM C4 t <u>I</u> nsert <u>V</u> iev	AN-V-1-3\PLC1 v <u>W</u> indow <u>H</u>	
	68	9	□]	× 🗅 🗈	IG ₹ \
	status	∇	symbol	address	comments
1			Cow_Id	VB27	ID of Cow
2			amt_milk	VB28	amount of milk
3			daily_temp	VB29	daily temperature ofcow
4			len_time	VB30	timelength to milk cow
•					•
					Row 1, Column 1 INS

Figure 6-29 Symbol Table

Downloading a Project with Data Log Configuration

Download a project with data log to CPU before using the record. If a project has a data log configuration, the download window has the option of "Data Log" checked by default.

Notice

When you download a project with data log, the existing log in the memory card will lost.

To download a project that contains data log configurations, follow steps below. See Figure 6-29.

- 1. Select File > Download.
- 2. Ensure the "Data Logs" checked in dialog as figure below.
- 3. Click "Download".

📳 Download			×
PPI connection			
Use the Options button to select blocks to d	ownload.		
Remote Address: 10.1.10.66:20000			CPU H226XL REL 02.01
Click Nownload to begin.			
Less Options		Download	Cancel
Options Program Block	To : PLC		
🗹 ст цві	To : PLC		
CT LIB2	To : PLC		
🖌 Init V Data Block	To : PLC		
🖌 System Block	To : PLC		
Recipes			
Data Logs			
EasyCAN Configuration			
@ Click Here for Help and Support	L	Close dialog on suc- Prompt on RUN to STO Prompt on STOP to RU	ress DP DI

Figure 6-29 download data logs

Using the S7-200 Explorer

The S7-200 Explorer is used to read data log from the memory card, and then store it in a Comma separated Values (CSV) file. Each read create a new file, format as PLC address, data

log name, date and time, to store into data log catalogue. You can decide, by right click to choose, whether to automatically start the application relevant to CSV extension name when data log has been read successfully. The catalogue of data log would be assigned in the process of installation. The default catalogue would be c:\programfiles\siemens\Microsystems with STEP 7 installed or c:\siemens\Microsystems if not.

To read a data log, follow the steps below:

- 1. Open Windows Explorer to find My S7-200 Network.
- 2. Select the My S7-200 Network folder.
- 3. Select the correct S7-200 PLC folder.
- 4. Select the memory card folder.
- 5. Find the correct data log configuration files to name as DAT Configuration x (DATx).
- 6. Right click the context menu, choose "Upload".

the gat your Farontee Just 1948						2
Q test - () · (?) Jeach () fades (1.0	- ¥ 0 0				
Agitem 1 My 57-200 Network (22)-CPU 226 11116-KEL 77 2010256 Mer	iony Cr	etridge				- 24
Folders.	×	Name	-744	Total -	Pidiel	Created
	97.96.3 3	Branding Ant Comparison Comp	199 2015 192 193 193 195	lanting Monath WetDatan N.C.Bash N.C.Bash N.C.Bash S.C	12010000 09494 3012000 5 02999 120112000 5 9799 12012000 5 9799 12012000 5 9799 12020000 5 9799 12020000 5 9799 12020000 5 9799 12020000 5 9799 12020000 5 9799	L211208 2549 211205 5076 1202005 5076 1202005 5076 1202005 5076 1202005 5076 1202005 5076 202006 5076 202006 5076

Figure 6-30 using S7--200 Explorer

Edit Existing Data Log Configuration

Steps to edit existing data log shows as below:

1. Click the dropdown list to select an existing data log configuration as shown in Figure 6-31.

2. Click "Delete Configuration" to delete an existing data log configuration. You can have up to four different data logs.

😨 Data Log Wizard	x
Existing Configurations Use this page to select an existing data log configuration to edit or to create new one	8
The following box lists existing Data Log Configurations. You may select to edit or delete an existing data log configuration, or select 'New'to create a new data log configuration.	
Configuration to edit DAT Configuration O (DAT O) Delete Configuration	
Click 'Next' to edit this configuration	
Click Here for Help and Support Prev Next Cancel	

Figure 6-31 Edit Existing Data Log Configurations

Instruction Created by the Data Log Wizard

The Data Log Wizard will add a subroutine Instruction in your project.

DATx_WRITE Subroutine

The subroutine DATx_WRITE is used to write current value of data log domain into memory card. Picture below shows this subroutine.

Return Error 132 when the instruction fails to access the memory card.

Table 6-9 Parameters of the DATAx_WRITE Subroutine

Inputs/Outputs	Data Type	Description
Error	Byte	VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

Notice

The times for write operation, typically 1m times, have limitation, whose overrange would result in ineffective EEPROM. So please ensure not to execute DATx_WRITE instruction every program cycle or the card would be damaged immediately.

7 Power Budget

CTH200 series CPU has an internal power supply for the unit and the expansion modules. It also provides 5VDC logic power supply, which can be used for power supply of any expansion in the system. Pay close attention to the system configuration to ensure that the CPU can provide the 5V power for the selected expansion modules. If the configuration requires more power than the CPU provides, some expansion modules must be removed or select CPU that can provide more power. See Chapter 7.2 5VDC Power for detailed information on CTH200 CPU's 5VDC logic budget and expansion module 5VDC power requirements.

CTH200 series CPU also provide 24VDC sensor power supply (except PSC266), which can provide 24VDC for input, relay coil on expansion module or other power supply. If the required power exceeds budget, an external 24VDC power supply must be added. For specific CTH200 CPU 24VDC sensor power budget, refer to Chapter 7.3 24VDC Power. If you need an external 24VDC power supply, make sure that the power supply is not connected in parallel to the sensor power supply of the CTH200 series CPU. To improve electrical noise protection, please connect to the common terminal (M) of different power sources.

7.1 Power Requirements

CPU provides 5VDC and 24VDC power supply itself:

Each CPU has an external 24VDC power supply, which can provide 24VDC for input and relay coil of the expansion module.

When expansion unit connect, CPU provides 5VDC power. If the 5VDC requirement of the extension unit exceeds the CPU rating power output, the extension unit must be unloaded until the demand is within the predetermined power supply. Chapter *4 Technical Specifications* provides information on CPU power budget and expansion module power requirements.

Note

If 5VDC power exceeds CPU power budget, it may unable to connect maximum modules the CPU allowed.

Notice

An external 24VDC power supply connected in parallel to CTH200 DC sensor power supply can cause a conflict because each power supply seeks to establish its own potential output. This conflict will shorten the service life of one or two power supplies or cause an immediate failure, then uncertain operation of the PLC system. The unpredictable operation may cause personal injury and equipment damage.

CTH200 CPU's 24VDC sensor and any external power supply should be supplied at different points. A separate connection for utility power is allowed.

7.2 5VDC Power

	Table 7-1	5VDC	power	consum	ption	table
--	-----------	------	-------	--------	-------	-------

CPU and DP modulo	5VDC current offered	Expansion	5VDC current
CPU and DP module	for expansion IO (mA)	module	(mA)
		SM 221-1BF	57
		SM 221-1BH	79
		SM 221-1BL	179
		SM 222-1BF	57
		SM 222-1BH	79
		SM 222-1BL	174
		SM 222-1HF	68
		SM 222-1HH	115
		SM 223-1BF	57
		SM 223-1BH	73
		SM 223-1BL	115
		SM 223-1HF	58
		SM 223-1PH	89
		SM 223-1PL	150
		SM 231-0HC	87
CPU H224/H224X	660	SM 231-0HF	87
H226L/H226XL/H228XL	660	SM 231-1HF	87
SM277B/SM277C	660	SM 231-5HF	87
SM277PN	1100	SM 232-0HB	87
		SM 232-0HD	87
		SM 235-0KD	87
		SM 231-7PB	87
		SM 231-7PC	87
		SM 231-7PD	87
		SM 231-7PF	87
		SM 231-7TD	87
		SM 231-7TF	87
		SM 231-7HF	87
		SM 231-7ND	87
		SM 231-7NF	87
		SM 231-7WA	140
		SM 277A	70
		SM 253 motion control module	90

Calculate max I/O configuration of CTH200 system according to the above table, refer to Chapter 7.4 Power Calculation Example

7.3 24VDC Power

		Expansion module 24VDC current		
24VDC power supp	oly (mA)	consumption (mA)		
		SM222-1BL	54	
		SM222-1HF	80	
		SM222-1BF	14	
		SM222-1BH	22	
		SM222-1HH	159	
		SM223-1BF	10	
		SM223-1BH	11	
24VDC power suppl CPU H224/H224X CPU H226L/H226XL CPU H228XL SM277B		SM223-1BL	22	
		SM223-1HF	40	
		SM223-1PH	80	
		SM223-1PL	159	
		SM231-0HC	17	
	000	SM231-0HF	31	
		SM231-1HF	30	
	300	SM231-5HF	31	
	300	SM232-0HD	112	
SM277B	400	SM232-0HB	61	
SIVIZITE	400	SM235-0KD	48	
		SM231-7PB	34	
		SM231-7PC	37	
		SM231-7PD	130	
		SM231-7PF	30	
		SM231-7ND	60	
		SM231-7NF	33	
		SM231-7HF	37	
		SM231-7TD	34	
		SM231-7TF	39	
		SM 231-7WA	100	
		SM277A	70	
		SM253 motion control module	80	

Table 7-2 24VDC	power	consumption	table
	poo.	oonoumption	labio

7.4 **Power Calculation Example**

Use following design methods to determine how many power configurations can be provided by the ontology unit power supply.

Table 7-3 shows power calculation of CTH200 PLC, including:

- CPU H224X
- SM223 module, and SM223-1PH32 has 8DC inputs/8 relay outputs
- SM221 module, and SM221-1BF32 has 8DC inputs
- The device has 62 inputs and 42 outputs

In this example, the CPU provides enough 5VDC current for the expansion module, but not enough 24VDC current for all input and expansion relay coils from the sensor. I/O requires 536mA while CTH200 CPU only provides 280mA. The device requires at least 236mA of 24VDC additional power to operate all contained 24VDC inputs and outputs.

CPU power budget	5VDC	24VDC						
Current CPU H224X offered	660 mA	300 mA						
M	Minus							
System requirement	5VDC	24VDC						
CPU H224X, 14 inputs		14* 4 mA= 56 mA						
4 SM 223-1PH32, 5V current	4*89 mA= 356mA							
2 SM 221-1BF32, 5V current	2*57 mA= 114 mA							
4 SM 223-1PH32, 8 inputs each		4*8*4 mA= 128 mA						
4 SM 223-1PH32, 8 relay coil each		4*8*9 mA= 288 mA						
2 SM 221-1BF32, 8 inputs each		2*8*4 mA= 64 mA						
Total demand power consumption	470 mA	536 mA						
Equal								
Current balance budget	5VDC	24 VDC						
Total current balance	190 mA	-236 mA						

Table7-3 Power budget table

8 Fault Diagnosis

CPU execute the following operations when faulted:

- 1) Get into STOP Mode
- 2) Light the SF/DIAG (Red) LED and STOP indicator up
- 3) Disconnect the outputs

Check the following conditions first:

> CTH200 CPU and expansion modules are powered normally.

I/O terminals for CTH200 CPU and expansion modules are fastened by using screws and connector.

- > Check the communication cable connect normally.
- > Adjust the Baud rate, Port or IP address if you still cannot find the PLC.

Except methods above, you can also read the diagnostic information from MagicWorks PLC, or inspect the LED indicators for PLC internal and external exception.

8.1 Diagnose by MagicWorks PLC

The faulted status would last until the error cleared, then open MagicWorks PLC software \rightarrow double-click the project interface \rightarrow select menu item "PLC" \rightarrow "Information" to check the error information.

Supported event		Code and Description
type	Code	Event Description
type	0x00	No fatal errors present; no error
	0x01	HSC box enabled before executing HDEF box
	0x02	Conflicting assignment of input interrupt to a point already
		assigned to a HSC
	0x03	Conflicting assignment of inputs to an HSC already assigned to
CPU nonfatal error		input interrupt or other HSC
	0x04	Attempted execution of an instruction that is not allowed in an
		interrupt routine
	0x05	Attempted execution of a second HSC/PLS with the same
		number before completing the first (HSC/PLS in an interrupt
		routine conflicts with HSC/PLS in main program)
	0x06	Indirect addressing error
	0x07	TODW (Time-of-Day Write) or TODR (Time-of-Day Read) data
		error

Table 8-1 Diagnosis function

	0x08	Maximum user subroutine nesting level exceeded		
-	0x09	Simultaneous execution of XMT/RCV instructions on Port 0		
-	0x0A	Attempt to redefine a HSC by executing another HDEF		
		instruction for the same HSC		
-	0x0B	Simultaneous execution of XMT/RCV instructions on Port 1		
-	0x0C	Reserved		
-	0x0D	Reserved		
-	0x0E	Reserved		
-	0x0F	Illegal numeric value in compare contact instruction		
-	0x10	Reserved		
-	0x11	Reserved		
	0x12	Reserved		
-	0x13	Illegal PID loop table		
-	0x80	Program too large to compile; reduce program size		
	0x81	Reserved		
	0x82	Illegal instruction; check instruction mnemonics.		
-		Missing MEND or instruction not allowed in main program: add		
	0x83	MEND instruction, or remove		
-	0x85	Missing FOR; add FOR instruction or delete NEXT instruction.		
-	0x86	Missing NEXT; add NEXT instruction or delete FOR instruction.		
-	0x87	Missing label (LBL, INT, SBR); add the appropriate label.		
-	0x88	Missing RET or instruction not allowed in a subroutine: add RET		
		to the end of the subroutine or remove incorrect instruction		
-		Missing RETI or instruction not allowed in an interrupt routine:		
	0x89	add RETI to the end of the interrupt routine or remove incorrect		
		instruction.		
-	0x8B	Illegal JMP to or from an SCR segment		
	0x8C	Duplicate label (LBL, INT, SBR); rename one of the labels.		
-		Illegal label (LBL, INT, SBR); ensure the number of labels		
	0x8D	allowed was not exceeded.		
	0.00	Illegal parameter; verify the allowed parameters for the		
	0x90	instruction.		
	0.04	Range error (with address information); check the operand		
	0X91	ranges.		
-	0.00	Error in the count field of an instruction (with count information);		
	0x92	verify the maximum count		
-	0x93	Size		
	0x94	FOR/NEXT nesting level exceeded.		
	0x95	Missing LSCR instruction (Load SCR)		
	0.000	Missing SCRE instruction (SCR End) or disallowed instruction		
	0X96	before the SCRE instruction		
	0,07	User program contains both unnumbered and numbered EV/ED		
	0791	instructions		
	UNUS	Illegal edit in RUN mode (edit attempted on program with		
	0790	unnumbered EV/ED instructions)		

	0x99	Too many hidden program segments (HIDE instructions)			
	0x9A	Attempt to switch to Freeport mode while in a user interrupt			
	0v0P	Illegal index (string operation in which a starting position value of			
	0290	0 is specified)			
	0x00	No fatal errors present			
	0x01	Reserved			
	0x02	Reserved			
	0x03	Scan watchdog time-out error			
	0x04	Reserved			
	0x05	Reserved			
	0x06	Reserved			
	0x07	Reserved			
	0x08	Reserved			
	0x09	Reserved			
CDLL fotal arrar	0x0A	Reserved			
CPU latal error	0x0B	Reserved			
	0x0C	Reserved			
	0x0D	Reserved			
	0x0E	Reserved			
	0x0F	Reserved			
	0x10	Internal software error			
	0x11	Compare contact indirect addressing error			
	0x12	Compare contact illegal floating point value			
	0x13	Reserved			
	0x14	Program is not understood by this S7-200			
	0x15	Compare contact range error			
		Log once for each scanning cycle			
	0x00	No fault			
	0x01	Module is busy			
	0x02	Module time-out with no response			
	0x03	Module type unmatched			
	0x04	Module version unmatched			
	0x05	Software error			
	0x06	Module waiting flag is time-out			
Diagnose events	0x07	Bus ACK error			
Refer to table 8-2	0x08	Bus CRC validation error			
	0x10	Memory shift outrange			
	0x11	Module not ready			
	0x12	Module configuration error			
	0x13	Module not support this instruction			
	0x15	Module internal diagnose			
	0x16	Module has no power			

Table 8-2 Special memory di	Table 8-2 Special memory diagnosis				
SMB8	Module 1 flag register				
SMB9	Module 1 error register				
SMB10	Module 2 flag register				
SMB11	Module 2 error register				
SMB12	Module 3 flag register				
SMB13	Module 3 error register				
SMB14	Module 4 flag register				
SMB15	Module 4 error register				
SMB16	Module 5 flag register				
SMB17	Module 5 error register				
SMB18	Module 6 flag register				
SMB19	Module 6 error register				
SMB20	Module 7 flag register				
SMB21	Module 7 error register				
SMB200~SMB549	Status for intelligent module				

8.2 Diagnose by CTH200 CPU Modules

Table 8-4 Description for CTH200 LED indicators

Indicator	Color	Description
SF/DIAG	Red	ON: system fault, OFF: no fault
		ON: CPU communicates with remote server successfully
RMC Green	(Ethernet port configured correctly)	
	Green	OFF: communication for remote server is failed or forbidden
		(communication access controlled by DIP switch)
RUN	Green	ON: system operation, OFF: system stop
STOP	Orange	ON: system stop, OFF: system operation
LINK/ACT	Green	ON: connected, FLASH: Transmission, OFF: Disconnected

<Note>: STOP and SF LED would light on synchronously started from the beginning of power lose to power down, and the system would log an event.

Appendix

A Using CT-MODBUS Master and Slave Libraries

A.1 CT_MODBUS library

4 libraries in all, which is master and slave libraries for PORT0 and PORT1.

CT_MODBUS function mainly used for Siemens CPU program and data. CT_MODBUS function block is built-into the CPU, not require data space, provided for user as a set of functions.

Notice

To get free libraries, visit at http://www.co-trust.com

A.2 Installation Instruction

【Add library file】

In the "File"--"Add/Delete Library", locate the file "ct_mbus_master.mwl"&"ct_mbus_slave.mwl", as shown in the below figure:

File	Edit	Insert	PLC	View	Debug	Windows	Help
	New						
B	Open						
	Close						
	Save						
8	Save A	I					
	Proper	ties					
	Import	t					
	Export						
	Create	Library					
	Add/Re	emove Li	brarie	s			
	Library	Memor	у				
	Update	e Lib					
	Print						
	Print Pr	review					
	Page S	etup					

Click "Add" after you find "ct_mbus_master.mwl" and "ct_mbus_slave.mwl"

🔀 Add / Remove Libraries	x
The following user-oreated instruction libraries are included for use in y projects. To make additional libraries available for use, click 'Add' a select appropriate MagioWorks PLC instruction library file (.ctmwl). If yo no longer wish to use an included instruction library, select it in the li below and click 'Remove'. Note that removing an instruction library from t list does not delete the file from the disk.	our nd u st his
/Lib/ct_em231_weight.ctmwl	^
/Lib/ct_flash_access_lib.ctmwl	
/Lib/ct_mbus_master.ctmwl	
/Lib/ct_mbus_master_port1.ctmwl	
/Lib/ct_mbus_master_tcp_single.ctmwl	
/Lib/ct_mbus_slave.ctmwl	
/Lib/ct_mbus_slave_port1.ctmwl	
/Lib/ct socket v1 1.ctmwl	$\mathbf{\sim}$
Add <u>R</u> emove <u>O</u> K <u>Cancel</u>	

You can find CT_MBUS_MASTER and CT_MBUS_SLAVE library under "libraries" of directory tree after installation:

[Call CT_MODBUS library]

Click "Network" you need to add function block, double click "MBUS_INIT", "MBUS_SLAVE", "MBUS_CTRL", "MBUS_MASTER" in "libraries", the corresponding function block will shows in "Network":

A.3 CT_MODBUS Library Function Explanation

[Modbus address]

Modbus addresses are typically 5 - or 6-character values containing data type and offset. The first one or two characters determine the data type, and the last four characters match the data type. The Modbus master station maps this address to correct function.

Modbus slave station instruction supports the following addresses: 00001 to 00128 are the actual output, corresponding to Q0.0--Q15.7; 10001 to 10128 are actual inputs corresponding to I0.0 -- I15.7; 30001 to 30032 are analog input registers corresponding to AIW0 to AIW62; 40001 to 4XXXX is the holding register, corresponding to V memory area.

All Modbus addresses are numbered from 1. The following table shows the correspondence between Modbus addresses and CTH200 addresses. The Modbus slave protocol allows you to limit the number of inputs, outputs, analog inputs, and holding registers (V zones) that Modbus master can access.

Modbus address	CTH200 address
000001	Q0.0
000002	Q0.1
000003	Q0.2
000127	Q15.6
000128	Q15.7
010001	10.0
010002	10.1
010003	10.2
010127	I15.6
010128	l15.7
030001	AIW0
030002	AIW2
030003	AIW4
030032	AIW62
040001	HoldStart
040002	HoldStart+2
040003	HoldStart+4
04xxxx	HoldStart+2 x (xxxx-1)

【Using Modbus slave station protocol instructions】

% CT_MODBUS slave station protocol instructions occupy CTH200 CPU resource

1) According to different Modbus protocol libraries, the FPORT 0 or 1 is used as the slave station protocol the condition that cannot be used for any other purpose, including communication with

MagicWorks PLC or SETP7-Micro/WIN, FPORT communication. The MBUS_INIT controls Port is set to Modbus is still PPI.

2) All SM corresponding to selected FPORT

3) Occupy 92 byte program space

% Steps use Modbus slave station protocol in CTH200 program

1) MBUS_INIT can be used to initialize or modify Modbus communication parameters when there are only one loop cycle. When you insert the MBUS_INIT, several hidden subroutines and interrupt service routines are automatically added to your program.

2) Use only one MBUS_SLAVE instruction in your program. It execute in each cycle and serves all requests received.

3) Connect CTH200CPU with Modbus master station by communication cable.

% All functions the Modbus slave station protocol instruction support

Modbus slave protocol instruction supports Modbus RTU protocol. It uses the FPORT function of S7--200, and supports most common Modbus functions. Support following Modbus functions:

Function	Description
1	Read single/multiple coil (actual output) status. 1 return any digital outputs
	ON/OFF status(Q)
2	Read single/multiple contactor (actual input) states. 2 returns the on/off status
	for any number of input points(I)
3	Read single/multiple hold registers. 3 returns the contents of V memory, keep
	the register in Modbus as the word-type, and up to 120 words in a request.
4	Read single/multiple input registers. 4 returns simulated input values.
5	Write single coil (actual output). 5 sets the actual output point which is not
	mandatory to the specified value. User program can override the values
	written by the Modbus request.
6	Write a single hold register. 6 writes a single hold register value to the S7-200
	V memory.
15	Write multiple coils (actual output). 15 writes multiple actual output values to
	the Q image region of S7-200. The starting output point must be the
	beginning of a byte (such as Q0.0 or Q2.0), and the number of outputs to
	write is a multiple of 8. This is the limit of Modbus slave station protocol
	instruction. These points are not mandatory, user program can override the
	values written by the Modbus request.
16	Write multiple hold registers. 16 write multiple save registers to S7-200 V
	zone. Up to 120 words can be written in a request.

※ MBUS_INIT instruction

The MBUS_INIT directive is used to enable and initialize or disable Modbus communication. The MBUS_INIT directive must execute error-free before using the MBUS_SLAVE directive. Before proceeding to the next instruction, the MBUS_INIT instruction must finish executing and set Done bit immediately. The MBUS_INIT directive should be executed only once per communication state change. Therefore, EN input should use edge detection elements to trigger

Parameter address	Explanation	Туре	Value range	Note
Mode	Select communication protocol: Input 1 defines Port as the Modbus protocol and enables it, and 0 defines Port as the PPI and disables Modbus protocol.	Bit		
Addr	Set site address	Byte	1~247	
Baud	Set baud rate	DWord	1.2K, 2.4K, 4.8K, 9600, 19.2K, 38.4K, 57.6K, 115.2	
Parity	Set parity	Byte	0—No parity 1—Odd parity 2—Even parity	All settings use one stop bit.
Delay	Extends standard Modbus information end timeout condition by increasing the specified number of ms for the standard Modbus information timeout.	Int	0~32767	Unit: ms
MaxIQ	Set available I and Q.	Int	0~128 0 means forbid I/O read and write	Recommend MaxIQ 128, allow to ask all IO of CTH200.
MaxAl	Sets the number of word input registers (AI).	Int	0~32 0 means forbid read analog input.	Recommend MaxAl value: H224/H224X-32 H226L/H226XL-32 /H228XL-32
MaxHold	Sets the number of available V storage word hold registers.	Int	0~32767	Unit: Word
HoldStart	Sets the starting address of the available holding register in the V storage area.	DWord	Pointer point to V memory	
Done	When the MBUS INIT instruction completes, the Done output is on.	Bit		
Error	Error output byte contains the result of the execution of the instruction.	Byte		

with pulses, or only execute during the first cycle.

*** MBUS_SLAVE** instruction

MBUS_SLAVE instruction is used to service requests from the Modbus master station and must be executed every cycle in order to check and respond to Modbus requests. When EN input switch on, it execute each cycle without input parameters. Parameter explanation:

Parameter address	Explanation	Туре	Value range	Note
Done	WhenMBUS_SLAVErespond to Modbus requestDoneoutputonerequest,Doneoutput disconnect.	Bit		
Error	Error output byte contains the result of the execution of the instruction.	Byte	Error code as following	Valid only when Done is on. Error code will not change if Done is off.

Error code table:

0	No error
1	Memory area range error
2	Illegal baud rate or parity
3	Illegal slave station address
4	Illegal value of Modbus parameter
5	Holding register and Modbus slave station symbol address overlap
6	Receive parity error
7	Receive CRC error
8	Illegal function request/no supported functions
9	Illegal memory area address in request
10	Slave station function disable

% Modbus slave station protocol instruction example

LAD program below established a no-parity slave station, address 1 and baud rate 115200:

✗ MBUS_IN	MBUS_INIT parameter configuration explanation		
Addr	Set slave station address 1		
Baud	Set baud rate 115200		
Parity	Set parity no-parity		
Delay	Set delay time 0ms		
MaxIQ	Set maxIQ 64 I/O(000001-0000064 and 010001-010064)		
MaxAl	Set maxAI 32 analog inputs(030001-030032)		
MaxHold	Set maxhold number of V area holding register(word as unit)		
StartHold	Starting address of S7-200 V area holding register that Modbus master		
Starti Iolu	station can visit (such as &VB0).		

[Use Modbus master station protocol instructions]

% Modbus master station protocol instructions occupy CTH200CPU resource

1) According to different Modbus protocol libraries, the FPORT 0 or 1 is used as the slave station protocol. When Port 0 or Port 1 is used as Modbus protocol communication, it cannot be used for any other purpose, including communication with MagicWorks PLC or SETP7-Micro/WIN, FPORT communication. The MBUS_INIT controls Port is set to Modbus is still PPI.

- 2) All SM corresponding to selected FPORT
- 3) Occupy 119 byte program space
- ※ MBUS_CTRL instruction

Use SM0.0 to call MBUS_CTRL instruction to initialize master station and enable it.

Parameter address	Explanation	Туре	Value range	Note
Mode	Set communication mode: 1 enable Modbus protocol, and 0 recovery system to PPI protocol.	Bit		
Baud	Set baud rate	DWord	11200, 2400, 4800, 9600, 19200, 38400, 57600, 115200	
Parity	Set parity	Byte	0—No parity 1—Odd parity 2—Even parity	All settings use one stop bit.
Timeout	Time master station wait for slave station, ms as unit.	Int	1~32767	Typical value 1000ms.
Done	Completion bit, automatically set 1 after initialization.	Bit		
Error	Initialization error code	Byte	0—no error 1—illegal parity selection 2—illegal baud-rate selection 3—illegal mode selection	Valid only when Done bit is 1.

Parameter explanation:

✗ MBUS_MSG instruction

Use SM0.0 to call Modbus RTU master station R/W subroutine MBUS_MSG, send a Modbus request after First connected. One R/W function (MBUS_MSG) enable at same time.

Parameter address	Explanation	Туре	Value range	Note
First	R/W request bit	Bit		Use pulse trigger for each new R/W request.
Slave	Set slave station address	Byte	1~247	
RW	Operation order	Byte	0~read 1~write	
Addr	Select data type of R/W	DWord	00000 to xxxx- on-off output 10000 to 1xxxx on-off input 30000 to 3xxxx- analog input 40000 to 4xxxx- holding register	
Count	Communication data number (number of word or bit)	Int		Maximum R/W of Modbus master station MBUS_MSG instruction is 120 words.
DataPtr	Data pointer, for read instruction, put data back into this data area; for write instruction, the data to be written is placed in this data area	DWord		
Done	Completion bit	Bit		
Error	Error code		Error code as following	Valid only when Done bit is 1.

Error code:

0	No error
1	Response parity error
2	unused
3	Receive timeout(slave station nonresponse)
4	Request parameter error
5	Modbus/FPORT disable
6	Modbus is busy for other request
7	Response error(response is not request operation)
8	Response CRC parity error
101	Slave station do not support request
102	Slave station do not support data address
103	Slave station do not support this data type
104	Slave station device fault
105	Slave station received information, but response delayed
106	Slave station is busy and refuse the information
107	Slave station refuse the information
108	Slave station register parity error

B Using CTH200 CPU Expansion Program Space

B.1 Function Introduction

The dynamic library function block is a special function provided by CTH200 CPU to expand the user programming program space and increase program privacy. It is an independent program block which is downloaded to PLC in advance and compiled to the program when the application is downloaded.

B.2 Instruction

【Usable range of Dynamic Library】

CTH200CPU can load up to two dynamic libraries (" ct_lib1 "and" ct_lib2 "). The dynamic libraries different CPUs support and their sizes are shown in table below:

CPU type	ct_lib1	ct_lib2
H224/H224X	Allow 4K	Not allow
H226L/H226XL/H228XL	Allow 24K	Allow 24K

【Create Dynamic Library】

In the project, create all the program blocks used as dynamic library, name it as ct_lib1 or ct_lib2, download to the PLC, in the PLC will generate library function including all the subroutine blocks in the project of the dynamic connection library.

PROGRAM COMMENTS	
Hetwork 1 Network Title	
Network Comment	
SM0.5	
↓ ct_lib1 { SBR_0 { II	

【Download Dynamic Library】

Download dynamic library program that edited well to the PLC (as shown in the figure below), in the PLC will generate a library function including all the subroutines in the project block dynamic connection library.

Every time download a new dynamic library, the PLC original library and program block is completely cleared. A dynamic library named ct_lib1 is generated in the PLC.

Note

Make sure only to download program block when download dynamic library.

🕐 Download			×
PPI connection			
Use the Options button to select blocks to d	lownload.		
Remote Address: 10.1.10.66:20000			CPU H226XL REL 02.01
Click Download to begin.			<u> </u>
Less Options		Download	Cancel
Options Program Block	To : PLC		
CT LIB1	To : PLC		
CT LIB2	To : PLC		
🖌 Init V Data Block	To : PLC		
✔ System Block	To : PLC		
Recipes			
Data Logs			
EasyCAN Configuration			
Click Here for Help and Support	t	Close dialog on suc Frompt on RUN to STU Frompt on STOP to R	cess DP UN

Download another dynamic library named ct_lib2 to PLC the same way.

【Use Dynamic Library】

First create the empty blocks the same name with PLC subroutine of dynamic libraries, such as ct_lib1 or ct_lib2, then call it in project, after the program downloaded to the PLC, the empty block in the CPU will be replaced with the original download same name library functions, the corresponding dynamic database program execute when CPU run.

Note

Load the dynamic library before you load the program

【Clear Dynamic Library】

When downloading the new dynamic library, the original dynamic library in the PLC is cleared. Download a main program name ct_lib1 or ct_lib2 empty block project into PLC, the corresponding dynamic library is completely cleared.

C Using CTH200 PLC Expand 100K Data Block Library

C.1 Function Introduction

Extension data space is addressable 100K data storage out of CTH200 CPU existed storage area, its keep features same with V memory data space, keep the data by super capacitor when CPU power off, maximum data keep time up to 100 hours, the data storage capacity is 100 k bytes. COTRUST has provided library instructions for this data access. Users can add the library provided by COTRUST to MicroWin, access this data space through the read-write instructions provided in the library, and realize data exchange between extended data space and other data space.

Note

Library download address: www.co-trust.com

C.2 Instruction

【Add library file】

"File" -> "Add/delete library", find "ext_mem.ctmwl" as shows below:

File	Edit	Insert	PLC	View	Debug	Windows	Help
Ľ	New						
Ð	Open						
	Close						
B	Save						
8	Save Al	I					
	Propert	ties					
	Import.						
	Export.						
	Create	Library					
	Add/Re	move Li	brarie	s			
	Library	Memor	y				
	Update	Lib					
	Print						
	Print Pr	eview					
	Page Se	etup					

Find file where you save ext_mem.ctmwl, click "Add"

🛱 Add / Remove Libraries	x
The following user-created instruction libraries are included for use in your projects. To make additional libraries available for use, click 'Add' and select appropriate MagioWorks FLC instruction library file (.ctmwl). If you no longer wish to use an included instruction library, select it in the list below and click 'Remove'. Note that removing an instruction library from thi list does not delete the file from the disk.	r s
/Lib/ct_uss.ctmwl	
/Lib/ebus_lib_v12.ctmwl	
/Lib/em231_7wa_lib.ctmwl	
/Lib/ext_mem.ctmwl	
/Lib/hsc_300_lib180.ctmwl	
/Lib/hsp_libV140.ctmwl	1
/Lib/motion_ctrl_lib.ctmwl	
/Lib/motion_ctrl_lib_v13.ctmwl	
./Lib/motion_ctrl_module_lib.ctmwl	
Add Remove OK Cancel	

You can see new ext_mem library under directory tree "Libraries" after installation.

[Call ext_mem library]

Click "Network" to add a function block, then double-click "ReadExtVMem" and "WriteExtVMem" to get the function block in "Network". As the following figure:

C.3 Ext_mem library Function Explanation

Parameter address	Explanation	Туре	Value range	Note
Ptr	Memory address pointer to read	DWord		Such as: &VB0,&IB0
Offset	Read starting offset address in expansion memory	DWord	0-102399	
Len	Read memory length(byte)	DWord		
Err	Return value indicate if it read successfully	BYTE		0 means read successfully others fail.

[Use ReadExtVMem to read data from expansion data space]

Parameter address	Explanation	Туре	Value range	Note
Ptr	Write memory length(byte)	DWORD		Such as: &VB0,&IB0
Offset	Return value indicate if it write successfully	DWORD	0-102399	
Len	Write memory length(byte)	DWORD		
Err	Return value indicate if it write successfully	BYTE		00 means write successfully others fail.

[Use WriteExtVMem to write data to expansion data space]

C.4 Application Example

2. Write the first 1024 bytes of VB100 to the extended memory starting at offset 200

D Using PID Control Library of CTH200 PLC

D.1 Using CPU Embedded PID_T Library

[Introduction]

PID_T function block integrate inside the CPU, does not occupy user data space, offered to user as a library function. It mainly aims at intelligent temperature control PID function, with self-tuning and self-adaptive function. No complex programming, but only need to call and set some simple parameters to use, and accurate temperature control.

Note

Library download address: www.co-trust.com

[Software Installation]

* Add library file

"File" -> "Add/delete library", find "pid_t.ctmwl", as the following figure

Find file where you save pid_t.ctmw, click "Add"

You can see new PID_T library under directory tree "Libraries" after installation.

% Call PID_T library

Click "network" to add a function block, then double-click "PID_T" to get the function block in "network". As the following figure:

【PID_T library function explanation】

Address	parameter	exp	lanation
---------	-----------	-----	----------

Parameter address	Explanation	Туре	Value range	Note
LOOP	Belong to which PID, no repeat. Start from 0.	Word, constant or variable	0-63	Control the loop ID
CTRL_WORD	Control Word, control PID run.	Word, constant or variable		Common control Word: 1) 16#03(Only heating output with adaptive function) 2) 16#07(Only cold output with adaptive function)
SP	Setting value	Word, constant or variable	-32768-32767	Unit: 0.1 ℃

PV	Measurement(f	Word, variable	-32768-32767	Unit: 0.1°C
MAX_PV	Maximum measurement	Word, constant or variable	-32768-32767	Unit: 0.1°C
OUT_CYCLE	Pulse output cycle	Word, constant or variable	1-255	Unit: s
TUNING_K	Self-tuning coefficient	DWord, float	0.5-2.0	0.5: The system controlis required smallovershoot1.0: Normal response2.0: The system controlis required to responsefast and largeovershoot
TUNING_ON	Start self-tuning	Bit, variable		Automatic reset after self-tuning
Кр	Кр	Word, variable		If the word variable is assigned constant, self-tuning function cannot be performed
Ti	Ti	Word, variable	1-3600	Unit: s If the word variable is assigned constant, self-tuning function cannot be performed
Td	Td	Word, variable	0-3600	Unit: s If the word variable is assigned constant, self-tuning function cannot be performed
STATUS_WOR D	Status Word	Word, variable		Run and warning status
HEAT_ON	Heat-output	Bit		
COOL_ON	Cool-output	Bit		
PID_OUT	PID analog output	Word, constant or variable	Only define heat output: 0-32000. Cool output: -32000-32000	

【Control Word and status Word bit address】

Bit	Setting	Note
0		PID stop
0	1	PID run
1	0	Integral always work, Kp do not self-tuning
I	1	Integral separate Kp self-tuning
2	0	PID unipolar output
2 1		PID bipolar output
3 0 1		Reserved
		Reserved
0 Ir		Integral works
4 1		Integral does not work
_ 0 Differential works		Differential works
э 1		Differential does not work
6		Reserved
7		Reserved

Control word bit address definition:

Status word bit address definition:

Bit	Setting	Note
0		No disconnection error
0	1	Disconnection error
1	0	Not implemented self-tuning
I	1	Self-tuning
0	0	No self-tuning error
2 1 Self-tuning error		Self-tuning error
2	0	No heating
3 1 H		Heating
4	0	No cooling
4	1	Cooling
F	0 PID stop	
Э	1	PID run
6		Reserved
7		Reserved

[Example]

Take a temperature zone as example, and the system and I/O configuration table is as follows:

System configuration	CPU226L+231-7PD32	Temperature acquisition using four - way thermocouple module	
Control request	 Only heating-output, no cooling-output Request self-tuning K thermocouple 		
I/O distribution			
Q0.0	Heating-output		
AIW0	Temperature input	K thermocouple	
M0.0	PID run/stop bit		
M1.0	Self-tuning start bit		

Application program

Explanation

PID_	_T parameter	explanation
------	--------------	-------------

Parameter	Address or value	Explanation	Note
LOOP	0	0 for first loop	
CTRL_WORD	VW10		
SP	VW12		
PV	AIW0		
MAX_PV	13700	Maximum input is 13700 for K thermocouple	
OUT_CYCLE	2	2s, pulse output cycle	
TUNING_K	1.0		
TUNING_ON	M0.1	Set from 1, reset after setting.	
Кр	VW14	Kp, setting value will automatically write to this variable after setting, users can adjust themselves.	
Ti	VW16	$\rm T$ i, setting value will automatically write to this variable after setting, users can adjust themselves.	
Td	VW18	Td, setting value will automatically write to this variable after setting, users can adjust themselves.	
STATUS_WOR D	VW20	Status Word	
HEAT_ON	Q0.0	Heating output	
COOL_ON	L0.0	Use a local variable for unused	
PID_OUT	LW2	Use a local variable for unused	

D.2 Using CTH200 PLC Thermocouple PID Control Module Library

[Function introduction]

The "PID_setting" function library is specially designed to provide parameter setting for the thermocouple PID expansion module (e.g., SM231-7TD, SM231-7TF). Integrate PID algorithm inside the thermocouple PID module. No complex programming, but only needs to call "PID_setting" library to set some simple parameters to use module, and the temperature control is accurate.

Library download address: www.co-trust.com

Note

- Apply to CTS7 231-7TD32, CTS7 231-7TF32 modules;
- Use SM231-7TD32 and SM231-7TF32 will occupy some V memory area, do not use
- V memory area when programming
- · Siemens CPU222 cannot use the library for data space restriction

[Installation]

℁ Add library file

"File" -> "Add/delete library", find "em231 pid lib.ctmwl", as the following figure

File	Edit	Insert	PLC	View	Debug	Windows	Help	
6	New Open Close							
	Save Save All Properties Import Export							
	Add/Re	emove Li	brarie	s				
	Library Update	/ Memor e Lib	y					
() 0	Print Print Pr Page S	review etup						

Find file where you save "em231 pid lib.ctmwl" click "Add"

Add / Remove Libraries					
The following user-created instruction libraries are included for use in your projects. To make additional libraries available for use, click 'Add' and select appropriate MagicWorks PLC instruction library file (.ctmwl). If you no longer wish to use an included instruction library, select it in the list below and click 'Remove'. Note that removing an instruction library from this list does not delete the file from the disk.					
/Lib/arcusfunctions.ctmwl					
/Lib/ct_em231_7hf_pid.ctmwl					
/Lib/ct_em231_pid.ctmwl					
/Lib/ct_em231_weight.ctmwl					
./Lib/ct_flash_access_lib.ctmwl					
/Lib/ct_mbus_master.ctmwl					
/Lib/ct_mbus_master_port1.ctmwl					
/Lib/ct mbus master tcp single.ctmwl					
<u>A</u> dd <u>R</u> emove <u>O</u> K <u>C</u> ancel					

You can see new PID_setting library under directory tree "Add" after installation.

% Call PID_Setting library

Click "network" to add a function block, then double-click "PID_Setting" to get the function block in "network". As the following figure:

% 【PID_setting library function explanation】

Parameter		_		N /
address	Explanation	Туре	Value range	Note
Run	Run	Bit	0 or 1	
Slot	Start from slot	Word, constant	0~6	
0.01	0	or variable		
Channel	Channel	Word, constant	0~7	
Onannoi	number	or variable	0.1	
SP	Setting value	Word, constant	-2000~32767	Unit: 0.1°C
		or variable	2000 02101	
				Common control
				Word:
				1) 16#03(Only
CTRLByt	Control byte,	constant or		heating output with
е	control PID run	variable		adaptive function)
				2) 16#07(Only cold
				output with adaptive
				function)
Cyclo	Pulse output	Word, constant	1 255	Linit: c
Cycle	cycle	or variable	1~200	
		Word, int,		
Кр	Кр	constant or		
		variable		
Тi	Τi	Word, int,	1~3600	Unit: s

Address parameter explanation

-				
		constant or		
		variable		
		Word, int,		Linit: o
Td	Td	constant or	0~3600	Offit. S
		variable		
Heating	Heating-output	Bit		
Cooling	Cooling-output	Bit		
	Measurement(
PV	feedback	Word, variable	-2000~32767	Unit: 0.1 ℃
	value)			
			Only define heat	
PID out	PID analog	Word, int,	output: 0-32000.	
PID_OUT	output	variable	Cool output:	
			-32000~32000	

✗ Control word bit address

Control word bit address definition:

Bit	Setting	Note
0	0	PID stop
0	1	PID run
1	0	Integral always work, Kp do not self-tuning
1	1	Integral separate Kp self-tuning
2	0	PID unipolar output
2	1	PID bipolar output
0		Reserved
3	1	Reserved
4	0	Integral works
4	1	Integral does not work
5 0 1		Differential works
		Differential does not work
6	-	Reserved
7	-	Reserved

$\,\,\%\,$ PID address and parameter configuration

• PID address calculation formula

Address name	Formula	Note
PID parameter address	<u>A=(2048+S*256)+16*C</u>	S is slot where module
PID positive pulse output address	<u>X=(2048+S*256)+12</u>	is(range: 0~6)
PID negative pulse output address	<u>Y=(2048+S*256)+13</u>	231-7HF is 0~7

• PID parameter output (modules to CPU)

Items	Address	Value set range	Actual value
Actual temperature	VW A	0~13000	0~1300°
Status Word	VW A+2		
PID analog output	VW A+4	-32000~32000	

• PID parameter input(CPU to modules)

Items	Address	Value set range	Actual value			
Setting temperature	VW A+128	0~13000	0~1300			
		When VB A+130 bit = 0				
	V(A+130).0	PID stop, no output	PID run			
	V(A+130).1	Integral always work, Kp do not self-tuning	Integral separate Kp self-tuning			
Control byte	V(A+130).2	PID unipolar output, 0~32000	PID bipolar output, -32000~32000, both heat and cool			
	V(A+130).3	Unused				
	V(A+130).4	Integral works				
	V(A+130).5	Differential works				
	V(A+130).6	Actual temperature filter, stronger ant jamming capability	Actual temperature do not filter			
PID pulse						
output cycle setting	VW A+132	1~255				
Кр	VW A+134	0~9999	0~999.9			
Ti	VW A+136	0~3600				
Td	VW A+138	0~3600				

Heating pulse output address

Channel 0 pulse output	V X.0
Channel 1 pulse output	V X.1
Channel 2 pulse output	V X.2
Channel 3 pulse output	V X.3
Channel 4 pulse output	V X.4
Channel 5 pulse output	V X.5
Channel 6 pulse output	V X.6
Channel 7 pulse output	V X.7

Cooling pulse output address

Channel 0 pulse output	V Y.0
Channel 1 pulse output	V Y.1
Channel 2 pulse output	V Y.2
Channel 3 pulse output	V Y.3
Channel 4 pulse output	V Y.4
Channel 5 pulse output	V Y.5
Channel 6 pulse output	V Y.6
Channel 7 pulse output	V Y.7

[Example]

System description

This routine sets the parameters of the first PID loop (channel 0) of SM231-7TD expansion module (slot 0). Call PIDSetting to set the loop parameters, no need to calculate the PID parameter address, just input the slot and channel number where the loop is, and then enable Run to run the loop.

Q0.0 is the positive pulse output; Q0.1 is negative pulse output;

VW0 is the actual temperature; VW2 is PID analog output;

Use other addresses to Modify PID setting parameters;

Set temperature: VW120;

Control Word: VB122;

Pulse output cycle: VW124;

Kp: VW126;

Ti: VW128;

Td: VW130;

Application program

Note

For PID modules normal use, please do not occupy following PID V storage when programming.

Address that module occupied in slot 0: VW2048 to VW2298 Address that module occupied in slot 1:VW2304 to VW2554 Address that module occupied in slot 2:VW2560 to VW2810 Address that module occupied in slot 3:VW2816 to VW3066 Address that module occupied in slot 4:VW3072 to VW3322 Address that module occupied in slot 5:VW3328 to VW3578 Address that module occupied in slot 5:VW3584 to VW3834

E Using Motion Control Library "motion_ctrl_lib"

E.1 Introduction

The motion_ctrl_lib library is used for CTH200 PLC. No complex programming, just call and set some simple parameters to use, this series of CPU has multi-axis independent control function, CPU with interpolation can carry out any two axis linear interpolation and circular interpolation, also support linear acceleration and deceleration control.

Note

Library download address: http://www.co-trust.com

E.2 Installation Instruction

【Add library file】

"File" -> "Add/delete library", find "motion_ctrl_lib.ctmwl", as the following figure

Find file where you save "motion_ctrl_lib.ctmwl" click "Add".

You can see new motion_ctrl_lib library under directory tree "Libraries" after installation.

E.3 Instructions Explanation

[Motion axes with the CPU I/O]

CPU type	CPU H224/H226L			CPU H224X/H226XL/H228XL			
Output	Q0.0	Q0.1	Q0.2	Q0.0	Q0.1	Q0.2	Q0.3
Motion control I/O	Pulse_0	Pulse_1	Pulse_2	Pulse_0	Pulse_1	Dir_0	Dir_1

Notice

Pulse_0	0 axis pulse output; Dir_0	0 axis direction output;
Pulse_1	1 axis pulse output; Dir_1	1 axis direction output;
Pulse_2	2 axis pulse output;	

[Motion_ctrl_lib instruction list]

Eurotion nome	Instruction nome	CTH200 series CPU		
Function name	instruction name	H224/H226L	H224X/H226XL/H228XL	
MC_HOMING	Homing instruction	Nonsupport	Support	
MC_INIT_DIR	Configure motor direction instruction	Nonsupport	Support	
MC_READ_POS	Read position instruction	Nonsupport	Support	
MC_EXT_RESET_EN	External reset coordinate enable instruction	Support		
MC_EXT_RESET_EN _EXT	External reset coordinate enable instruction II	Nonsupport	Support	
MC_SET_POS_ZERO	Software reset instruction	Nonsupport	Support	
MC_SET_POS_PV	Set target position instruction	Non	support	
MC_SET_MAX_ACCE LE	Set maximum acceleration instruction	Nonsupport	Support	
MC_SPEED_CTL	Speed control instruction	Su	upport	
MC_PTP_R	Uniaxial relative motion instruction	Su	upport	
MC_PTP_A	Uniaxial absolute motion instruction	Nonsupport	Support	
MC_LINE_R	Two axis linear interpolation relative motion instruction	Nonsupport		
MC_LINE_A	Two axis linear interpolation absolute motion instruction	Nonsupport	Support	

Appendix

MC_CIRCLE_R	Two axis circular interpolation relative motion instruction	Nonsupport	Support
MC_CIRCLE_A	Two axis circular interpolation absolute motion instruction	Nonsupport	Support
MC_SET_CI_MODE	Set continuous interpolation function instruction	Nonsupport	Support

HOMING instruction

(1)	Function	name:	MC	HOMING
Ś	i unouon	numo.	1010_	

② Function: Find device origin by setting parameters such as homing mode.

The relationship between the axis number and external reset IO signal (such as homing Z pulse):

Axis 0 ——I0.2 (HSC0, SM37.0) Axis 1 ——I1.0 (HSC1, SM47.0)

Axis 2 ——I1.4 (HSC2, SM57.0) Axis 3 ——I0.5 (HSC4, SM147.0)

If the homing mode refers to the origin switch (mode 3 or 4), connect origin switch signal (the HOMING_SW parameter of the instruction) to the corresponding point above; otherwise, the origin cannot be found.

3	Parameter
$\langle \mathbf{O} \rangle$	i ulullotol

Name	I/O	Description	Туре	Value range	Note
E_STOP	IN	Emergency stop bit 1: valid, 0: invalid	BOOL	0~1	1 Run only when RUN =1 and E_STOP =0. 2 When E_STOP=1, RUN reset internal.
LIMIT_SW_CC	IN	CCW counterclockwise	BOOL	0~1	

W		stroke limit input			
LIMIT_SW-CW	IN	CW counterclockwise stroke limit input	BOOL	0~1	
HOMING_SW	IN	Origin signal input	BOOL	0~1	
AXIS_NO	IN	Axis number	BYTE	0~3	Unchangeable in the process
SIGNAL_TYPE	IN	76543210Signal type:Bit0: Counterclockwisestroke limit input signaltype0—High level1—Low levelBit1: Clockwise strokelimit input signal type0—High level1—Low levelBit2: Origin switchsignal type0—High level1—Low levelBit2: Origin switchsignal type0—High level1—Low level	BYTE	0~255	
HOMING_MO DE	IN	Homing mode	BYTE	1~14	PleaserefertoAppendixE.4BacktoZeroModeIllustration
MIN_SPEED	IN	Minimum speed Unit: Hz	DWORD	0~200000	1 Pulse output close when speed < 5Hz. 2 Unchangeable in the
SEARCH_SPE ED	IN	Origin search speed Unit: Hz	DWORD	0~200000	process 3 Search speed should
APPROACH_S PEED	IN	Origin close speed Unit: Hz	DWORD	0~200000	not be too large, close speed should be as small as possible
ТА	IN	Time of ACC/DEC. Unit: ms	DWORD	0~10000	Changeable in the process
RUN	IN	Run enable bit 1: Valid	BOOL	0~1	1 Run only when RUN =1 and E_STOP =0. 2 RUN reset internal when run complete. 3 When E_STOP=1, RUN reset internal.
STATUS	OUT	76543210Output status byte:Bit0:Parameterconfiguration error sign1—Parameter	BYTE	0~255	Bit0: 1 Judge Only to axis parameter configuration error and homing mode out of range. 2 No error reported for

						Appendix
			configuration error			other parameters, it will
			0—Parameter			set to the nearest
			configuration normal			reasonable value
			Bit1: Run sign			automatically.
			1—Running			3 Report parameter
			0—Do not run			failure if TA=0 and the
			Bit2: Completion sign			maximum acceleration
			1—Instruction			is not set; TD the same
			execution completed			
			0—Instruction			
			execution do not			
			completed			
			Bit3: Busy sign			
			1—Valid, the axis			
			occupied by other			
			instruction			
			0—Invalid, executing			
			instruction or			
			execution done.			
			Bit4: Reserved			
			Bit5: Find origin or not			
			1—Found origin			
			0—Not find origin			
AC	T_SPEED	OUT	Current speed	DWORD 0~200	0000	

④ Explanation

The program detect each input by scanning (the Z phase is not affected by this), so when the switch value changes and process not in time, there may be some delay. If the homing speed (including search and close speed) is too high, the processing delay will be amplified, resulting in inaccurate return.

External reset coordinate enable instruction

1 Function name: MC_EXT_RESET_EN

(2) Function: When call this instruction, set whether enable external IO reset absolute coordinate value.

Note: The relationship between the axis number and external reset signal:

Axis 0 ——I0.2 (HSC0, SM37.0) Axis 1 ——I1.0 (HSC1, SM47.0) Axis 2 ——I1.4 (HSC2, SM57.0) Axis 3 ——I0.5 (HSC4, SM147.0)

③ Parameter

Name	I/O	Description	Туре	Value range
SET	IN	SET rising edge, set external reset	Bool	Range: 0~1
		enable, for each call, first reset SET		
		and then set 1		
RESET	IN	RESET rising edge, prohibit	Bool	Range: 0~1
		external reset enable. For each call,		
		first reset and then set 1		
AXIS_NO	IN	Set axis number, 0/1/2/3	Byte	Range: 0~3

Configure motor direction instruction

1 Function name: MC_INIT_DIR

② Function: Configure motor direction

Note: Execute one time for first scan cycle CPU power on

③ Parameter

Name	I/O	Description	Туре	Value range	Note
DIR_ LEVEL	IN	Configure effective level when positive direction signal Set motor forward for corresponding direction axis output "1" when DIR_LEVEL is 1. Set motor reverse for corresponding direction axis output "0" when DIR_LEVEL is 0.	Bool	Range: 0~1	Default: 1, Motor forward when direction axis output is"1"
AXIS_NO	IN	Set axis number, 0/1/2/3	Byte	Range: 0~3	

Read position instruction

1 Function name: MC_READ_POS

② Function: Read the absolute coordinate value of each axis. Once the origin coordinate is set, the value will be calculated according to the relationship between output pulse and direction: positive rotation output one pulse: +1, and reverse rotation output a pulse: -1. What you end up with is an absolute coordinate with the set point as the origin.

(3) Parameter

Name	I/O	Description	Туре	Value range	Note
AXIS_NO	IN	Set axis number, 0/1/2/3	Byte	Range: 0~3	
ACT_PO S	OUT	Absolute coordinate of current axis (1 pulse 1 units coordinate)	DInt	-2147483647~ +2147483647	This instruction no error and set the axis number correctly.

Set target position instruction

1 Function name: MC_SET_POS_PV

(2) Function: This instruction is used to write the absolute location of the machine to the module. For example, machine can save current position when the power cut off. And this position instead of origin will be written back to the module next time the machine power on, so that the absolute position counting starting point of the module is consistent with the actual starting point of the machine. If this position happens to be the origin, this instruction has the same effect as MC_SET_POS_ZERO.

Name	I/O	Description	Туре	Value range
AXIS_NO	IN	Set axis number	BYTE	0~3
SET	IN	SET rising edge, instruction enable, reset and then set 1 for each call.	BOOL	0~1
PV	IN	Set the target position, points plus or minus. The positive output pulse indicates the positive direction along	DINT	-2147483648 ~ +2147483647

the X-axis, and the negative pulse	
number indicates the negative	
direction along the X-axis.	

Set maximum acceleration instruction

1 Function name: MC_SET_MAX_ACCELE

(2) Function: Set maximum acceleration(= MAX_SPEED/TA)(TA \neq 0)(no call indicates no setting for acceleration)

③ Parameter

Name	I/O	Description	Туре	Value range	Note
MAX_SPEE D	IN	Maximum speed Unit: Hz	DWORD	0~200000	Changeable in the process
ТА	IN	Time of ACC/DEC, Unit: ms	DWORD	0~10000	Changeable in the process; if TA=0, no settings for acceleration.
AXIS	IN	Set axis number	BYTE	0~3	This instruction no error and set the axis number correctly.
SET	IN	Give SET a rising edge to take effect after above parameter ensure.	BOOL	0~1	

Uniaxial relative motion instruction

1 Function name: MC_PTP_R

② Function: Use for single - axis point - to - point control (single - axis fixed - length drive). One call for fixed pulse output, through the maximum and minimum speed and deceleration time setting, the output pulse will gradually accelerate to the largest speed, when the pulse number is ready to run, cut down pulse frequency automatically, to prevent vibration or jammed caused by too much inertia when start or stop the machine.

Name	I/O	Description	Туре	Value range	Note
E_STOP	IN	Emergency stop bit 1: valid, 0: invalid	Bool	0/1	1. Run only when Run =1 and E_Stop =0 2. RUN reset internal when E_STOP = 1
AXIS_NO	IN	Set axis number, 0/1/2/3	Byte	0~3	Unchangeable in the process
MIN_SPE ED	IN	Minimum speed of run or stop. Unit: HZ	Dword	500~200000	1. Set minimum speed less than maximum speed
MAX_SP EED	IN	Maximum speed of run Unit: HZ	Dword	500~200000	2. Changeable in the process
TA	IN	Time of ACC/DEC, Unit: ms	Dword	0~10000	Changeable in the process; if TA=0, no settings for acceleration.
RUN	IN	Run enable bit 1: valid	BOOL	0~1	1 Run only when RUN =1 and E_STOP =0. 2 RUN reset internal when run complete. 3 when E_STOP=1, RUN reset internal.
STATUS	OUT	76543210Output status byte:Bit0:Parameterconfiguration error sign1—Parameterconfiguration error0—Parameterconfiguration normalBit1: Run sign1—Running0—Do not runBit2: Completion sign1—Instructionexecution completed0—Instructionexecutiondo notcompletedBit3: Busy sign	BYTE	0~255	 Bit0: 1 Judge Only to axis parameter configuration error and homing mode out of range. 2 No error reported for other parameters, it will set to the nearest reasonable value automatically. 3 Report parameter failure if TA=0 and the maximum acceleration is not set; TD the same

③ Parameter

		1—Valid, the axis occupied by other instruction 0—Invalid, executing instruction or execution done.			
SET_PO S	IN	Output pulse. The positive output pulse indicates the positive direction along the X-axis, and the negative pulse number indicates the negative direction along the X-axis.	DInt	-2147483647 ~ +2147483647	Modifiable during operation. When the new set value is greater than the number of pulses output, the final output pulse will be subject to the new set value. When the new set value is less than the number of output pulses, the pulse output will be stopped immediately
ACT_PO S	OUT	Absolute coordinate of current axis (1 pulse 1 units coordinate)	DInt	-2147483647 ~ +2147483647	This instruction no error and set the axis number correctly.
ACT_SPE ED	OUT	Current run speed	Dword	500~200000	Note: This value may be a little off actual one, at most 5K, related to acceleration time and setting speed

Note 1

Theoretically DCC/DEC time TA \leq (MAX_SPEED) – (MIN_SPEED), such as TA>(MAX_SPEED) – (MIN_SPEED), then default TA=(MAX_SPEED) – (MIN_SPEED) inside the motion control instruction

Uniaxial absolute motion instruction

① Function name: MC_PTP_A

② Function: Use for single - axis point - to - point control (fixed-point instead of fixed - length). One call for fixed pulse output, through the maximum and minimum speed and deceleration time setting, the output pulse will gradually accelerate to the largest speed, when the pulse number is ready to run, cut down pulse frequency automatically, to prevent vibration or jammed caused by too much inertia when start or stop the machine.

3	Parameter
J	i urumotor

Name	I/O	Description	Туре	Value range	Note
E_STOP	IN	Emergency stop bit 1: Valid, 0: Invalid	Bool	0/1	1 Run only when Run =1 and E_Stop =0 2 RUN reset internal when E_STOP = 1
AXIS_NO	IN	Set axis number, 0/1/2/3	Byte	0~3	Unchangeable in the process
MIN_SPE ED	IN	Minimum speed of run or stop. Unit: HZ	Dword	0~200000	1 Set minimum speed less than maximum speed
MAX_SP EED	IN	Maximum speed of run Unit: HZ	Dword	0~200000	2 Changeable in the process 3 Recommend MIN_SPEED ≥500. Or the pulse output will complete minimum speed limit (usually 500) at the end of the deceleration. 4 Write MAX_SPEED 0 to realize the soft stop function (the output pulse deceleration stops). Then the enable bit RUN no reset; If write speed back to a large one,

					output the pulse until
ТА	IN	Time of ACC/DEC, Unit: ms	Dword	0~10000	Changeable in the process; if TA=0, no settings for acceleration.
RUN	IN	Run enable bit 1: Valid	BOOL	0~1	1 Run only when RUN =1 and E_STOP =0. 2 RUN reset internal when run complete. 3 when E_STOP=1, RUN reset internal.
STATUS	OUT	76543210Output status byte:Bit0:Parameterconfiguration error sign1—Parameterconfiguration error0—Parameterconfiguration normalBit1: Run sign1—Running0—Do not runBit2: Completion sign1—Instructionexecution completed0—Instructionexecution do notcompletedBit3: Busy sign1—Valid, the axisoccupied by otherinstruction or executiono—Invalid, executinginstruction or execution	BYTE	0~255	Bit0: 1 Judge Only to axis parameter 2 No error reported for other parameters, it will set to the nearest reasonable value automatically. 3 Report parameter failure if TA=0 and the maximum acceleration is not set; TD the same
SET_PO S	IN	Output pulse. The positive output pulse indicates the positive direction along the X-axis, and the negative pulse number indicates the negative direction along the	DInt	-2147483648 ~ +2147483647	Modifiable during operation. When the new set value is greater than the number of pulses output, the final output pulse will be subject to the new

						Appendix
			X-axis.			set value. When the
						new set value is less
						than the number of
						output pulses, the
						pulse output will be
						stopped immediately
			Absolute coordinate of		-2147483648	This instruction no
	ACT_PO S	OUT	current axis (1 pulse 1	DInt	~	error and set the axis
			units coordinate)		+2147483647	number correctly.
	ACT_SPE ED	OUT	Current run speed	Dword	0~200000	

Two axis circular interpolation relative motion instruction

1 Function name: MC_CIRCLE_R

2 Function: Circular interpolation between any two axes (set points as relative coordinates).

Name	I/O	Description	Туре	Value range	Note
E_STOP	IN	Emergency stop bit 1: Valid, 0: Invalid	BOOL	0~1	1. Run only when RUN =1 and E_STOP =0. 2. When E_STOP=1, RUN reset internal.
CW	IN	Interpolation of CW or CCW 1: CW 0: CCW	Bool	0/1	Unchangeable in the process

③ Parameter

FULL	IN	Full-circle sign 1—Full-circle 0—Arc	Bool	0/1	Unchangeable in the process
A_AXIS	IN	Interpolation A axis number. Interpolation requires two axes, the virtual A-axis and B-axis. Map to the 0, 1, 2, 3 axes of the actual output. This parameter sets which axis the A axis maps to. For example, 3 indicates A axis maps to the three axes (Pulse_3 and Dir_3).	Byte	0~3	Unchangeable in the process
B_AXIS	IN	Interpolation B axis number. Interpolation requires two axes, the virtual A-axis and B-axis. Map to the 0, 1, 2, 3 axes of the actual output. This parameter sets which axis the B axis maps to.	Byte	0~3	Unchangeable in the process
A_END _POS	IN	If FULL = 0, indicates destination coordinate(relative origin) of virtual A-axis If FULL = 1, indicates coordinate (relative starting point) of an arc that is different from the starting point, not the end point.	Dint	-2147483647 ~ +2147483647	1 Default interpolation starting point coordinate(0,0) 2 Unit: pulse, Transform with actual
B_END_ POS	IN	If FULL = 0, indicates the coordinates of virtual B axis end point (relative to the starting point). If FULL = 1, indicates the coordinates of the arc at a point different from the starting point, not the ending point.	Dint	-2147483647 ~ +2147483647	1 Interpolation start coordinate default (0,0) 2 Unit: pulse, Transfer with actual displacement Note: Unchangeable in the process

Appendix

RADIUS	IN	Arc radius 1. There are positive and negative. Positive number: indicates the arc trajectory with radian less than 180°. Negative number: indicates the arc trajectory with a radian greater than 180°. 2. The absolute value of RADIUS represents Arc radius	Dint	R <3 x 10^6	1 Unmodifiable in the process 2 Unit: pulse, Transform with actual radius
MIN_ SPEED	IN	Minimum speed of run or stop. Unit: HZ	Dword	500~200000	Unmodifiable in the process
MAX_ SPEED	IN	Maximum speed of run Unit: HZ	Dword	500~200000	Changeable in the process
TA		Time of ACC/DEC, Unit: ms	Dword	0~10000	1 Unmodifiable in the process 2 Calculate acceleration only when startup and TA/TD changes
 RUN	IN/OUT	Run enable bit 1: Valid	BOOL	0~1	1 Run only when RUN =1 and E_STOP =0. 2 RUN reset internal when run complete. 3 when E_STOP=1, RUN reset internal.
STATUS	OUT	76543210Output status byte:Bit0:Parameter configurationerror sign1—parameter configuration error0—Parameter configuration error0—Parameter configurationnormalBit1: Run sign1—Running0—Do not runBit2: Completion sign1—Instruction executioncompleted0—Instruction execution do notcompletedBit3: Busy sign1—Valid, the axis occupied byother instruction0—Invalid, executing instructionor execution done.	BYTE	0~255	Bit0: 1. Judge Only to axis parameter 2. No error reported for other parameters, it will set to the nearest reasonable value automatically. 3. Report parameter failure if TA=0 and the maximum acceleration is not set; TD the same
---------------	-----	--	-------	---------------------------------	--
ACT_A _POS	OUT	Current position of A axis(relative coordinate, actual output pulse) Indicates relative coordinate of 0	Dint	-2147483647 ~ +2147483647	
ACT_B _POS	OUT	Current position of B axis(relative coordinate, actual output pulse) Indicates relative coordinate of 1	Dint	-2147483647 ~ +2147483647	
ACT _SPEED	OUT	Current run speed	Dword	500~200000	

Two-axis circular interpolation absolute motion instruction

① Function name: MC_CIRCLE_A

Two-axis circular inter	polation absolut	e motion
SM0.0	MC_CI	RCLE_A
	- E_STOP	
	- cw	
	- FULL	
?	???- A_AXIS	STATUS - ????
?	???- B_AXIS	ACT_A_POS - ????
?	???- A_END_POS	ACT_B_POS ????
?	POS	ACT_SPEED ????
?'	???- RADIUS	
?'	???- MIN_SPEED	
?	??? MAX_SPEED	
?	??? - TA	
?	?.?-RUN	

② Function: Circular interpolation between any two axes (set points as absolute coordinates).

Name	I/O	Description	Туре	Value range	Note
E_STOP	IN	Emergency stop bit 1: Valid, 0: Invalid	BOOL	0~1	1 Run only when RUN =1 and E_STOP =0. 2 When E_STOP=1, RUN reset internal.
CW	IN	Interpolation of CW or CCW 1: CW 0: CCW	Bool	0/1	Unchangeable in the process
FULL	IN	Full-circle sign 1-Full-circle 0-Arc	Bool	0/1	Unchangeable in the process
A_AXIS	IN	Interpolation A axis number. Interpolation requires two axes, the virtual A-axis and B-axis. Map to the 0, 1, 2, 3 axes of the actual output. This parameter sets which axis the A axis maps to. For example, 3 indicates A axis maps to the three axes (Pulse_3 and Dir_3).	BYTE	0~3	Unchangeable in the process
B_AXIS	IN	Interpolation B axis number. Interpolation requires two	BYTE	0~3	

③ Parameter

		axes, the virtual A-axis and B-axis. Map to the 0, 1, 2,			
		3 axes of the actual output.			
		This parameter sets which			
		axis the B axis maps to.			
		If FULL = 0, indicates			
		destination			
		coordinate(relative origin)			
		of virtual A-axis		-21/7/836/8	
A_END_P	INI	If FULL = 1, indicates		-2147403040	
OS		coordinate (relative	DINT	~	
		starting point) of an arc		+2147463647	4 Llana difiable in
		that is different from the			
		starting point, not the end			the process
		point.			2 Unit: puise,
		If FULL = 0, indicates the			I ransform with
		coordinates of virtual B			diaplacement
		axis end point (relative to			displacement
		the starting point). If FULL		-2147483648	
B_END_P	IN	= 1, indicates the	DINT	~ +2147483647	
OS		coordinates of the arc at a			
		point different from the			
		starting point, not the			
		ending point.			
		Arc radius			
		1. There are positive and			
		negative. Positive number:			
		indicates the arc traiectory			1 Unmodifiable in
		with radian less than 180°.			the process
		Negative number:			2 Unit: pulse.
RADIUS	IN	indicates the arc trajectory	DINT	R <3 x 10^6	Transform with
		with a radian greater than			actual
		180°			displacement
		2 The absolute value of			
		RADIUS represents Arc			
		radius			
1	1		1		1

						Appendix
						1 Set minimum
						speed less than
						maximum speed
						2 Changeable in
			Minimum speed of run or			the process
	MIN_SPE	IN	stop.	Dword	0~200000	3 Recommend
	ED		Unit: HZ			MIN_SPEED
						≥500. Or the
						pulse output will
						complete
						minimum speed
						imit (usually 500)
						at the end of the
						deceleration.
						4 Write
			Maximum speed of run Unit: HZ			MAX_SPEED 0
		IN				to realize the soft
						stop function (the
	MAX SPE			_		output pulse
	ED			Dword	0~200000	deceleration
						stops). Then the
						enable bit RUN
						no reset; If write
						speed back to a
						large one, output
						the pulse until it
						complete.
						1 Unmodifiable in
						the process
	τ۸		Time of ACC/DEC,	Duvard	0 10000	2 Calculate
	IA		Unit: ms	Dword	0~10000	acceleration only
						when startup and
						TA/TD changes
						1 Run only when
	RUN					RUN =1 and
						E_STOP =0.
			Run anabla bit			2 RUN reset
		IN/OUT		BOOL	0~1	internal when run
						complete.
						3 When
						E_STOP=1, RUN
						reset internal.

STATUS	OUT	76543210Output status byte:Bit0:parameterconfiguration error sign1—parameterconfiguration error0—parameterconfiguration normalBit1: Run sign1—Running0—Do not runBit2: Completion sign1—Instruction executioncompleted0—Instruction executiondo not completedBit3: Busy sign1—Valid, the axis occupiedby other instruction0—Invalid, executinginstruction or execution	BYTE	0~255	Bit0: 1 Judge Only to axis parameter 2 No error reported for other parameters, it will set to the nearest reasonable value automatically. 3 Report parameter failure if TA=0 and the maximum acceleration is not set; TD the same
ACT_A_P OS	OUT	Current position of A axis(relative coordinate, actual output pulse) Indicates relative coordinate of 0 axis when A axis allocate to 0 axis	DINT	-2147483648 ~ +2147483647	
ACT_B_P OS	OUT	Current position of B axis(relative coordinate, actual output pulse) Indicates relative coordinate of 1 axis when B axis allocate to 1 axis	DINT	-2147483648 ~ +2147483647	
ACT_SPE ED	OUT	Current run speed	Dword	0~200000	

Two-axis three-point circular interpolation relative motion instruction

① Function name: MC_3P_CIRCLE_R

②Function: Circular interpolation between any two axes (set points as relative coordinates).

Name	I/O	Description	Туре	Value range	Note
E_STOP	IN	Emergency stop bit 1: Valid, 0: Invalid	Bool	0~1	1 Run only when RUN =1 and E_STOP =0. 2 When E_STOP=1, RUN reset internal.
FULL	IN	Full-circle sign 1—Full-circle 0—Arc	Bool	0/1	Unchangeable in the process
A_AXIS	IN	Interpolation A axis number. Interpolation requires two axes, the virtual A-axis and B-axis. Map to the 0, 1, 2, 3 axes of the actual output. This parameter sets which axis the A axis maps to. For example, 3 indicates A axis maps to the three axes (Pulse_3 and Dir_3).	BYTE	0~3	Unchangeable in the process
B_AXIS	IN	Interpolation B axis number. Interpolation requires two axes, the virtual A-axis	BYTE	0~3	Unchangeable in the process

③ Parameter

		and B-axis. Map to the 0, 1, 2, 3 axes of the actual output. This parameter sets which axis the B axis maps to. Determine arc second point of the A axis coordinate (use for		-2147483648	
A_SEC_P OS	IN	certain the second point in the direction of an arc or circle at three points, relative coordinate)	DINT	~ +2147483647	1 Interpolation starting
B_SEC_P OS	IN	Determine arc second point of the B axis coordinate (use for certain the second point in the direction of an arc or circle at three points, relative coordinate)	DINT	-2147483648 ~ +2147483647	coordinate is first point of the arc(relative instruction starting coordinate (0, 0)) 2 Unmodifiable in the process 3 Unit: pulse, Transform with actual replacement 4 Interpolation starting coordinate default(0,0)
A_END_P OS	IN	Determine arc third point of axis A coordinate. If FULL = 0, it is also the terminal coordinate. (used for determine arc or circle at three points, relative coordinate)	DINT	-2147483648 ~ +2147483647	
B_END_P OS	IN	Determine arc third point of axis B coordinate. If FULL = 0, it is also the terminal coordinate. (used for determine arc or circle at three points, relative coordinate)	DINT	-2147483648 ~ +2147483647	
MIN_SPEE D	IN	Minimum speed of run or stop. Unit: HZ	Dwor d	0~200000	1 Set minimum speed less than maximum speed 2 Changeable in the process 3 Recommend MIN_SPEED ≥500. Or the pulse output will
MAX_SPE ED	IN	Maximum speed of run Unit: HZ	Dwor d	0~200000	complete minimum speed limit (usually 500)

					Appendix
					at the end of the deceleration. 4 Write MAX_SPEED 0 to realize the soft stop function (the output pulse deceleration stops). Then the enable bit RUN no reset; If write speed back to a large one, output
					the pulse until it complete.
TA		Time of ACC/DEC, Unit: ms	Dwor d	0~10000	1 Unchangeable in the process 2 Calculate acceleration only when startup and TA/TD changes
RUN	IN/OUT	Run enable bit 1: valid	Bool	0~1	1 Run only when RUN =1 and E_STOP =0. 2 RUN reset internal when run complete. 3 When E_STOP=1, RUN reset internal.
STATUS	OUT	76543210Output status byte:Bit0:parameterconfiguration error sign1—parameterconfiguration error0—parameterconfiguration normalBit1: Run sign1—Running0—Do not runBit2: Completion sign1—Instructionexecutioncompleted0—Instructionexecution	BYTE	0~255	Bit0: 1 Judge Only to axis parameter 2 No error reported for other parameters, it will set to the nearest reasonable value automatically. 3 Report parameter failure if TA=0 and the maximum acceleration is not set; TD the same

		do not completed Bit3: Busy sign 1—Valid, the axis occupied by other instruction 0—Invalid, executing instruction or execution done			
ACT_A_PO S	OUT	Current position of A axis(relative coordinate, actual output pulse) Indicates relative coordinate of 0 axis when A axis allocate to 0 axis	DINT	-2147483648 ~ +2147483647	
ACT_B_PO S	OUT	Current position of B axis(relative coordinate, actual output pulse) Indicates relative coordinate of 1 axis when B axis allocate to 1 axis	DINT	-2147483648 ~ +2147483647	
ACT_SPEE D	OUT	Current actual speed	Dword	0~200000	

Two-axis three-point circular interpolation absolute motion instruction

1 Function name: MC_3P_CIRCLE_A

② Function: Circular interpolation between any two axes (set points as absolute coordinates).

③ Parameter					
Name	I/O	Description	Туре	Value range	Note
E_STOP	IN	Emergency stop bit 1: Valid, 0: Invalid	BOOL	0~1	1 Run only when RUN =1 and E_STOP =0. 2 When E_STOP=1, RUN reset internal.
FULL	IN	Full-circle sign 1-full-circle 0-Arc	Bool	0/1	Unchangeable in the process
A_AXIS	IN	Interpolation A axis number. Interpolation requires two axes, the virtual A-axis and B-axis. Map to the 0, 1, 2, 3 axes of the actual output. This parameter sets which axis the A axis maps to. For example, 3 indicates A axis maps to the three axes (Pulse_3 and Dir_3).	BYTE	0~3	Unchangeable in the process
B_AXIS	IN	Interpolation B axis number. Interpolation requires two axes, the virtual A-axis and B-axis. Map to the 0, 1, 2, 3 axes of the actual output. This parameter sets which axis the B axis maps to.	BYTE	0~3	Unchangeable in the process
A_SEC_POS	IN	Determine arc second point of the A axis coordinate (use for certain the second point in the direction of an arc or circle at three points, relative coordinate)	DINT	-2147483648 ~ +2147483647	1. Interpolation starting coordinate is first point of the arc (relative instruction starting
B_SEC_POS	IN	Determine arc second point of the B axis coordinate (use for certain the second point in the direction of an arc or circle at three points, relative coordinate)	DINT	-2147483648 ~ +2147483647	coordinate(0,0)) 2. Unmodifiable in the process 3. Unit: pulse 4. Transform with actual replacement

A_END_POS	IN	Determine arc third point of axis A coordinate. If FULL = 0, it is also the terminal coordinate. (used for determine arc or circle at three points, relative coordinate)	DINT	-2147483648 ~ +2147483647	
B_END_POS	IN	Determine arc third point of axis B coordinate. If FULL = 0, it is also the terminal coordinate. (To determine arc or circle at three points, relative coordinate)	DINT	-2147483648 ~ +2147483647	
MIN_SPEED	IN	Minimum speed of run or stop. Unit: HZ	Dwor d	0~200000	 Set minimum speed less than maximum speed Changeable in the process Recommend MIN_SPEED ≥500. Or the pulse output will complete
MAX_SPEE D	IN	Maximum speed of run Unit: HZ	Dwor d	0~200000	minimum speed limit (usually 500) at the end of the deceleration. 4. Write MAX_SPEED 0 to realize the soft stop function (the output pulse deceleration stops). Then the enable bit RUN no reset; if write speed back to a large one, output the pulse until it complete.
ТА	<u> </u>	Time of ACC/DEC, Unit: ms	Dwor d	0~10000	1. Unmodifiable in the process 2. Calculate acceleration

					Appendix
					only when startup and TA/TD changes
RUN	IN/OU T	Run enable bit 1: Valid	BOOL	0~1	 Run only when RUN =1 and E_STOP =0. RUN reset internal when run complete. When E_STOP=1, RUN reset internal.
STATUS	OUT	76543210Output status byte:Bit0:parameterBit0:parameterconfiguration error sign1—Parameterconfiguration error0—Parameterconfiguration normalBit1: Run sign1—Running0—Do not runBit2: Completion sign1—Instructionexecutioncompleted0—Instructionexecutiondo not completedBit3: Busy sign1—Valid, the axis occupiedby other instruction0—Invalid,executinginstructionor executiondone.	BYTE	0~255	Bit0: 1. Judge Only to axis parameter 2. No error reported for other parameters, it will set to the nearest reasonable value automatically. 3. Report parameter failure if TA=0 and the maximum acceleration is not set; TD the same
ACT_A_POS	OUT	Current position of A axis(relative coordinate, actual output pulse) Indicates relative coordinate of 0 axis when A axis allocate to 0 axis	DINT	-2147483648 ~ +2147483647	
ACT_B_POS	OUT	Current position of B axis(relative coordinate, actual output pulse)	DINT	-2147483648 ~ +2147483647	

		Indicates relative coordinate of 1 axis when			
		B axis allocate to 1 axis			
ACT_SPEED	OUT	Current actual speed	Dword	0~200000	

Speed control instruction

① Function name: MC_SPEED_CTL

- ② Function: Control the frequency of uniaxial output pulse, the output pulse frequency (speed) can be changed any time. When receive the soft stop command, it will automatically slow down to stop. When receive the emergency stop command, the pulse output will stop immediately without any deceleration.
- ③ Parameter

Name	I/O	Description	Туре	Value range	Note
RUN	IN	Run enable bit 1: valid	BOOL	0~1	 Run only when RUN =1 and E_STOP =0. RUN reset internal when run complete. When E_STOP=1, RUN reset internal.

					Appendix
E_STOP	IN	Emergency stop bit 1: valid, 0: invalid	BOOL	0~1	1. Run only when RUN =1 and E_STOP =0. 2. When E_STOP=1, RUN reset internal.
SOFT_S TOP	IN	Soft stop bit1: valid 0: invalid Output pulse decelerate to stop when receive the instruction	Bool	0/1	
DIR	IN	Pulse direction bit	Bool	0/1	Unmodifiable in the process
AXIS _NO	IN	Set axis number, 0/1/2/3	Byte	0~3	Unmodifiable in the process
MIN _SPEED	IN	Minimum speed of run or stop. Unit: HZ	Dword	0~200000	1. Minimum speed should less than setting
SET _SPEED	IN	Setting speed, output pulse will accelerate or decelerate to this speed before stop command	Dword	0~200000	speed 2. Modifiable in the process
ТА	IN	Time of ACC Unit: ms	Dword	0~10000	Modifiable in the process; Calculate acceleration only when startup and TA/TD changes
TD	IN	Time of ACC, from setting time to minimum time Unit: ms	Dword	0~10000	Unmodifiable in the process

STATUS	OUT	7 6 5 4 3 2 1 0 Output status byte: Bit0: parameter configuration error sign 1—parameter configuration error 0—parameter configuration normal Bit1: Run sign 1—Running 0—Do not run Bit2: Completion sign 1—Instruction execution completed 0—Instruction execution do not completed Bit3: Busy sign 1—Valid, the axis occupied by other	BYTE	0~255	Bit0: 1 Judge Only to axis parameter 2 No error reported for other parameters, it will set to the nearest reasonable value automatically. 3 Report parameter failure if TA=0 and the maximum acceleration is not set; TD the
		1—Valid, the axis occupied by other			not set; TD the
		instruction			same
		0—Invalid, executing instruction or execution done.			
ACT	ОПТ	Current actual speed	Dword	0~200000	Current actual
_SPEED			Dword	0~200000	speed

Software back to zero instruction

① Function name: MC_SET_POS_ZERO

② Function: Reset absolute coordinate

Note: Call the instruction when the machine moves to a certain position, which is equivalent to setting the origin of the axis at that position. Each time you call the "read absolute coordinates" command, you get a coordinate value relative to that point.

Name	I/O	Description	Туре	Value range	Note
		Enable reset bit			
		Set absolute coordinate 0			
SET	IN	at SET rising edge, set	Bool	Range: 0~1	
		SET bit 0, then set 1 for			
		each call			
AXIS_NO	IN	Set axis number: 0/1/2/3	Byte	Range: 0~3	

③ Parameter

Two-axis line interpolation relative motion instruction

① Function name: MC_LINE_R

Two-axis line interpolation :	relative motion motion
sмо.o	MC_LINE_R EN
-	E_STOP
????-	A_AXIS STATUS - ????
????-	B_AXIS ACT_A_POS - ????
????-	MIN_SPEED ACT_B_POS -????
????-	MAX_SPEED ACT_SPEED ????
????-	ТА
????-	A_POS
????-	B_POS
??.?-	RUN

② Function: Line interpolation between any two axes or any plane area (set points as relative coordinates).

Name	I/O	Description	Туре	Value range	Note
E_STOP	IN	Emergency stop bit 1: Valid, 0: Invalid	BOOL	0~1	1RunonlywhenRUN=1andE_STOP =0.2WhenE_STOP=1,RUN reset internal.
A_AXIS	IN	Interpolation A axis number. Interpolation requires two axes, the virtual A-axis and B-axis. Map to the 0, 1, 2, 3 axes of the actual output. This parameter sets which axis the A axis maps to. For example, 3 indicates A axis maps to the three axes (Pulse_3 and Dir_3).	BYTE	0~3	Unmodifiable in the process
B_AXIS	IN	Interpolation B axis number. Interpolation requires two axes, the virtual A-axis and B-axis. Map to the 0, 1, 2, 3	BYTE	0~3	

③ Parameter

		axes of the actual output. This parameter sets which axis the B axis maps to.				
MIN_SPE ED	IN	Minimum speed of run or stop. Unit: HZ	Dword	0~200000	 Set minimum speed less than maximum speed Changeable in the process Recommend MIN_SPEED ≥500. Or the pulse output will complete minimum speed limit (usually 500) at the 	
MAX_SP EED	IN	Maximum speed of run Unit: HZ	Dword	0~200000	end of the deceleration. 4 Write MAX_SPEED 0 to realize the soft stop function (the output pulse deceleration stops). Then the enable bit RUN no reset; If write speed back to a large one, output the pulse until it complete.	
TA	IN	Time of ACC Unit: ms	Dword	0~10000	Modifiable in the process Calculate acceleration only when startup and TA/TD changes	
A_POS	IN	Virtual A axis destination (relative) coordinate.	DINT	-2147483648 ~ +2147483647	1 Unmodifiable in the process 2 Unit: pulse	
B_POS	IN	Virtual B axis destination (relative) coordinate.	DINT	-2147483648 ~ +2147483647		
RUN	IN/OUT	Run enable bit 1: valid	BOOL	0~1	1 Run only when RUN =1 and E_STOP =0. 2 RUN reset internal when run complete. 3 When E_STOP=1, RUN reset internal.	

Appendix

STATUS	OUT	76543210Output status byte:Bit0:parameterconfigurationerrorsign1—Parameterconfiguration error0—Parameterconfiguration normalBit1: Run sign1—Running0—Do not runBit2: Completion sign1—Instructionexecution completed0—Instructionexecution do notcompletedBit3: Busy sign1—Valid, the axisoccupied by otherinstruction0—Invalid, executinginstructionor	BYTE	0~255	Bit0: 1 Judge Only to axis parameter 2 No error reported for other parameters, it will set to the nearest reasonable value automatically. 3 Report parameter failure if TA=0 and the maximum acceleration is not set; TD the same
ACT_A_P OS	OUT	Current position of A axis(relative coordinate, actual output pulse) Indicates relative coordinate of 0 axis when A axis allocate to 0 axis	DINT	-2147483648 ~ +2147483647	
ACT_B_P OS	OUT	Current position of B axis(relative coordinate, actual output pulse) Indicates relative coordinate of 1 axis when B axis allocate to 1 axis	DINT	-2147483648 ~ +2147483647	
ACT_SP EED	OUT	Current actual speed	Dword	0~200000	

Two-axis line interpolation absolute motion instruction

(2) Function: Line interpolation between any two axes or any plane area (set points as absolute coordinates).

3	Parameter	

Name	I/O	Description	Туре	Value range	Note
E_STOP	IN	Emergency stop bit 1: Valid, 0: Invalid	BOOL	0~1	1 Run only when RUN =1 and E_STOP =0. 2 When E_STOP=1, RUN reset internal.
A_AXIS	IN	Interpolation A axis number. Interpolation requires two axes, the virtual A-axis and B-axis. Map to the 0, 1, 2, 3 axes of the actual output. This parameter sets which axis the A axis maps to. For example, 3 indicates A axis maps to the three axes (Pulse_3 and Dir_3).	BYTE	0~3	Unmodifiable in the process
B_AXIS	IN	Interpolation B axis number. Interpolation requires two axes, the virtual A-axis and B-axis. Map to the 0, 1, 2, 3 axes of the actual output. This parameter sets which axis the B axis maps to.	BYTE	0~3	

						Appendix
						1 Set minimum
						speed less than
						maximum speed
						2 Changeable in
	MIN SPEE		Minimum speed of run or			the process
	_ = D	IN	stop.	Dword	0~200000	3 Recommend
	D		Unit: HZ			MIN_SPEED
						≥500. Or the
						pulse output will
						complete
						minimum speed
						limit (usually 500)
						at the end of the
						deceleration.
						4 Write
						MAX SPEED 0
						to realize the soft
						stop function (the
	MAX SPE		Maximum speed of run			
	ED	IN	Unit: HZ	Dword	0~200000	deceleration
						stops) Then the
						stops). Then the
						enable bit KUN
						no reset, il write
						speed back to a
						large one, output
						the pulse until it
						complete.
						Modifiable in the
	ТА	IN			0~10000	process
			Time of ACC	Dword		Calculate
			Unit: ms			acceleration only
						when startup and
						TA/TD changes
		16.1	Virtual A axis destination	D 11	-2147483648	1 Unmodifiable in
	A_POS	IN	(relative) coordinate.	DINT	~	2 Unit: pulse
					+2147483647	2 Onit. puise
			Virtual B axis destination		-214/483648	
	B_P05	IIN	(relative) coordinate.	DINT	~	
					TZ 14/40304/	1 Run only when
	RUN	IN/O UT				RUN =1 and
						F STOP = 0
			Run enable bit	BOOI	0~1	2 RUN reset
			1: valid	BOOL	0~1	internal when run
						2 whon

					E_STOP=1,
					RUN reset
					internal.
STATUS	OUT	76543210Output status byte:Bit0:parameterconfiguration error sign1—Parameterconfiguration error0—Parameterconfiguration normalBit1: Run sign11—RunningO0—Do not runBit2: Completion sign1—InstructionexecutioncompletedO0—Instructionexecution10—Ualid, the axis occupiedbit3: Busy signI—Valid, the axis occupiedby other instructionOInvalid,executinginstructionorexecutionOO—Invalid,executiondone.O	BYTE	0~255	Bit0: 1 Judge Only to axis parameter 2 No error reported for other parameters, it will set to the nearest reasonable value automatically. 3 Report parameter failure if TA=0 and the maximum acceleration is not set; TD the same
ACT_A_P OS	OUT	Current position of A axis(relative coordinate, actual output pulse) Indicates relative coordinate of 0 axis when A axis allocate to 0 axis	DINT	-2147483648 ~ +2147483647	
ACT_B_P OS	OUT	Current position of B axis(relative coordinate, actual output pulse) Indicates relative coordinate of 1 axis when B axis allocate to 1 axis	DINT	-2147483648 ~ +2147483647	
ACT_SPE ED	OUT	Current actual speed	Dword	0~200000	

External reset coordinate enable instruction II

①Function name: MC_EXT_RESET_EN_EXT

②Function: Set if enable external IO reset absolute coordinate

Note: Correspondence of axis number and external reset signal

Axis 0 ——I0.2 (HSC0, SM37.0) Axis 1 ——I1.0 (HSC1, SM47.0) Axis 2 ——I1.4 (HSC2, SM57.0) Axis 3 ——I0.5 (HSC4, SM147.0)

③ Parameter

Name	I/O	Description	Туре	Value range	Note
SET	IN	Enable reset bit Set absolute coordinate 0 at SET rising edge, set SET 0, then set 1 for each call	Bool	0~1	
RESET	IN	RESET rising edge, forbid to enable external reset, RESET then set 0 for each call	Bool	0~1	
AXIS_NO	IN	Set axis number, 0/1/2/3	Byte	0~3	
STATUS	OUT	1: Reset complete 0: Reset uncompleted	Byte	0~1	

④ Explanation

Use 0 axis to call this instruction. After the SET rising edge enables the external reset function and I0.2 detect the "effective reset signal", the system resets the axis 0 absolute coordinate, and also the STATUS setting reset complete. After the RESET rising edge prohibits the external reset function, even if I0.2 detect the "effective reset signal", the system will not reset the 0 axis absolute coordinate, and the STATUS reset instruct is non-reset state.

Note

The so-called "effective reset signal", the reset signal of each axis corresponding to an external IO, and the corresponding register set its effective level. For example, 0 axis corresponds to I0.2, and HSCO control register SM37.0 set the effective reset level of 0 axis. When set to 0, the effective reset signal of 0 axis is in I0.2 high level. When set to 1, the effective reset signal of axis 0 is in I0.2 low level; This setting is only effective if and only if the corresponding high-speed counter (0 axis corresponds to HSCO) is enabled, otherwise (no high-speed counter is enabled) the system default high level is the effective reset signal. If 0 axis, I0.2 high level is the effective reset signal. In the same way for other axes, the corresponding relation of the relevant control of each axis is shown in ② of this section.

Set maximum acceleration instruction

① Function name: MC_SET_MAX_ACCELE

SM0.0	MC_SET_MAX_ACCELE
1 1 ??? ??? ??? ??:	?- MAX_SPEED ?- TA ?- AXIS ?- SET

② Function: Set maximum acceleration (= MAX_SPEED/TA; TA≠0), if the instruction isn't called, then the maximum acceleration has not been set.

6	Doromoto
(3)	Parameter

Name	I/O	Description	Туре	Value range	Note
MAX_SPEED	IN	Maximum speed of long-axis run	Dword		Modifiable in the process
TA	IN	Time of ACC Unit: ms	Dword	0~10000	Modifiable in the process Calculate acceleration only when startup and TA/TD changes
AXIS_NO	IN	Set axis number, 0/1/2/3	Byte		
SET	IN	Enable reset bit Set absolute coordinate 0 at SET rising edge, SET set 0, then set 1 for each call	Bool		

④ Explanation

If set the X-axis parameter TA=0, or the X-axis does not call this instruction, it is considered that the X-axis does not set maximum acceleration; Otherwise, MAX_ACCELE=MAX_SPEED/TA is considered to be set as the X-axis maximum acceleration. The significance of this instruction is:

a. Set an appropriate acceleration to limit the acceleration of each instruction on an axis.

Such as PTP instruction, set AXIS_NO=0, MIN_SPEED=1000, MAX_SPEED=11000, TA=500, then in theory the acceleration of PTP motion is 20HZ/ms (= (MAX_SPEED-MIN_SPEED)/TA); if 0 axis call MC_SET_MAX_ACCELE and set maximum acceleration 15HZ/ms, the PTP actual acceleration is 15HZ/ms (the same for MC_LINE_R and MC_CIRCLE_R)

b. An instruction on a certain axis is to obtain the maximum acceleration to run

If the PTP instruction run at the maximum acceleration, call MC_SET_MAX_ACCELE instruction on the coaxes to set the maximum acceleration (the parameter TA of MC_SET_MAX_ACCELE instruction cannot be 0, otherwise cannot obtain the maximum acceleration), and simultaneously set the parameter TA of PTP instruction to 0.

If the maximum acceleration is not set and the PTP instruction TA=0, the alarm parameter fails on the PTP instruction. (Same for MC_LINE_R and MC_CIRCLE_R)

Note: For the biaxial instructions MC_LINE_R and MC_CIRCLE_R, if both set the maximum acceleration, the smaller one will be taken as the maximum acceleration of the biaxial system. If only one axis is set with the maximum acceleration, then take it as the maximum acceleration of the biaxial system. If the maximum acceleration is not set on both axes, the biaxial system has no limitation for acceleration.

Also: After MAX_SPEED, TA, AXIS_NO have been determined, give SET a rising edge, so these parameters are updated and effective.

Set continuous interpolation instruction

① Function name: MC_SET_CI_MODE

2 Function: set if enable continuous interpolation function

③ Parameter

Name	1/0	Description	Туре	Value range	Note
ENABLE	IN	0: Turn off continuousinterpolation1: Enable continuousinterpolation	Bool	0~1	Do not modify in continuous interpolation process

④ Explanation

When need continuous interpolation function, call this instruction in PLC program first to activate the continuous interpolation function, and then call each interpolation instruction successively according to the trajectory sequence. Similarly, the RUN bit of each instruction must be activated according to the trajectory sequence. If not call this instruction, default as discontinuous interpolation movement.

Note

Note1: When one axis call the motion control instruction, the function of recovering normal IO can be restored only when the axis is reenergized and reset or the CPU is stopped.

Note2: Calculation of line interpolation instruction(A_POS, B_POS), circular interpolation (A_END_POS, B_END_POS, RADIUS):

POS-----Pulses needed in interpolation instruction;

L -----Absolute value on coordinate actual point, unit: mm;

S ------Lead screw on motion axis, unit: mm;

M------ The subdivision of the stepping driver or the resolution of the servo drive (the number of pulses required for each turn of the motor);

Formula: POS = L*M ÷ S(unit: pulse number)

Note3: When TA \neq 0, acceleration=(MAX_SPEED-MIN_SPEED)/TA(limited to the set maximum acceleration); If TA=0, use instruction MC_SET_MAX_ACCELE to set the maximum acceleration; if it is not set, report the parameter failure. The same for TD. For the biaxial instruction, if both axes set maximum acceleration, take the smaller one as system acceleration.

E.4 Homing Mode Illustration

14 origin modes in all, select by your own request to precision and application

Mode	Definition
1	Refer to negative origin switch and Z phase signal origin mode
2	Refer to positive origin switch and Z phase signal origin mode
3	Only refer to origin mode of negative origin switch
4	Only refer to origin mode of positive origin switch
5	Only refer to origin mode of Z phase signal(negative back to zero)
6	Only refer to origin mode of Z phase signal(positive back to zero)
7	Refer to origin mode of origin switch , Z phase signal and positive limit(adopt Z phase signal of positive origin switch left of left edge)
8	Refer to origin mode of origin switch , Z phase signal and positive limit(adopt Z phase signal of positive origin switch right of left edge)
9	Refer to origin mode of origin switch , Z phase signal and positive limit(adopt Z phase signal of positive origin switch left of right edge)
10	Refer to origin mode of origin switch , Z phase signal and positive limit(adopt Z phase signal of positive origin switch right of right edge)
11	Refer to origin mode of origin switch , Z phase signal and negative limit(adopt Z phase signal of positive origin switch right of right edge)
12	Refer to origin mode of origin switch , Z phase signal and negative limit(adopt Z phase signal of positive origin switch left of right edge)
13	Refer to origin mode of origin switch , Z phase signal and negative limit(adopt Z phase signal of positive origin switch right of left edge)
14	Refer to origin mode of origin switch , Z phase signal and negative limit(adopt Z phase signal of positive origin switch left of left edge)

Regardless of the initial position of the machine, when the equipment (origin switch, positive route limit switch, negative route limit switch) installed, the origin of the equipment sought by the servo is always unique. The vertical line "I" in the schematic diagram of the following modes represents the initial position, and the circle "S" represents the origin position.

Origin mode 1: Refer to negative origin switch and Z phase signal origin mode

The origin switch located in the negative mechanical direction. The machine moves towards the origin switch, decelerates to stop after detecting the origin switch, then reverses to exit the origin switch, finds the next Z phase signal of the motor and records it as the origin, the motor stops immediately.

Origin mode 2: Refer to positive origin switch and Z phase signal origin mode

The origin switch located in the positive mechanical direction. The machine moves towards the origin switch, decelerates to stop after detecting the origin switch, then reverses to exit the origin switch, finds the next Z phase signal of the motor and records it as the origin, the motor stops immediately.

Origin mode 3: Only refer to origin mode of negative origin switch

The origin switch located in the negative mechanical direction. The machine moves towards the origin switch, decelerates to stop after detecting the origin switch, and then reverses to exit the origin switch. Find and record origin switch signal falling edge as the origin, and the motor stops immediately.

Origin mode 4: Only refer to origin mode of positive origin switch

Mechanical slider	
Mechanical trajectory 1	
Origin switch signal ——	

The origin switch located in the positive mechanical direction. The machine moves towards the origin switch, decelerates to stop after detecting the origin switch, and then reverses to exit the origin switch. Find and record origin switch signal falling edge as the origin, and the motor stops immediately.

The motor moves along the negative direction from the current position and records it as the origin when the next Z phase signal is found.

Origin mode 6: Only refer to origin mode of Z phase signal (positive back to zero)

The motor moves along the positive direction from the current position and records it as the origin when the next Z phase signal is found.

Origin mode 7: Refer to origin mode of origin switch, Z phase signal and positive limit (adopt Z phase signal of positive origin switch left of left edge)

As shown in the figure above, the mechanical slider slides in the positive limit direction (positive direction), and Z in the left position along the left side of the origin switch signal, that is, outside the effective range of the origin switch signal.

When the machine is within the origin switch range (mechanical motion trajectory 2), the origin can be found by directly running in the negative direction. When the machine is outside the origin switch (mechanical motion track 1 and 3), the machine runs in a constant direction (positive direction) toward the limit switch. According to the detected sequence of the origin switch and limit switch, find the movement track and the origin.

Origin mode 8: Refer to origin mode of origin switch, Z phase signal and positive limit (adopt Z phase signal of positive origin switch right of left edge)

As shown in the figure above, the mechanical slider slides in the positive limit direction (positive

direction), and Z in the left position along the right side of the origin switch signal, the effective range of the origin switch signal.

When the machine is within the origin switch range (mechanical motion trajectory 2), the origin can be found by directly running in the negative direction. When the machine is outside of the origin switch (mechanical motion track 1 and 3), the machine runs in a constant direction (positive direction) toward the limit switch. According to the detected sequence of the origin switch and limit switch, find the movement track and the origin.

Origin mode 9: Refer to origin mode of origin switch, Z phase signal and positive limit (adopt Z phase signal of positive origin switch left of right edge)

As shown in the figure above, the mechanical slider slides in the positive limit direction (positive direction), and Z in the right position along the left side of the origin switch signal, the effective range of the origin switch signal.

When the machine is within the origin switch range (mechanical motion trajectory 2), the origin can be found by directly running in the negative direction. When the machine is outside of the origin switch (mechanical motion track 1 and 3), the machine runs in a constant direction (positive direction) toward the limit switch. According to the detected sequence of the origin switch and limit switch, find the movement track and the origin.

Origin mode 10: Refer to origin mode of origin switch, Z phase signal and positive limit (adopt Z phase signal of positive origin switch right of right edge)

As shown in the figure above, the mechanical slider slides in the positive limit direction (positive direction), and Z in the right position along the right side of the origin switch signal, the effective range of the origin switch signal.

When the machine is within the origin switch range (mechanical motion trajectory 2), the origin can be found by directly running in the negative direction. When the machine is outside of the origin switch (mechanical motion track 1 and 3), the machine runs in a constant direction (positive direction) toward the limit switch. According to the detected sequence of the origin switch and limit switch, find the movement track and the origin.

Origin mode 11: Refer to origin mode of origin switch, Z phase signal and negative limit (adopt Z phase signal of positive origin switch right of right edge)

As shown in the figure above, the mechanical slider slides in the negative limit direction (negative direction), and Z in the right position along the right side of the origin switch signal, outside of the

effective range of the origin switch signal.

When the machine is within the origin switch range (mechanical motion trajectory 2), the origin can be found by directly running in the negative direction. When the machine is outside of the origin switch (mechanical motion track 1 and 3), the machine runs in a constant direction (positive direction) toward the limit switch. According to the detected sequence of the origin switch and limit switch, find the movement track and the origin.

Origin mode 12: Refer to origin mode of origin switch, Z phase signal and negative limit (adopt Z phase signal of positive origin switch left of right edge)

As shown in the figure above, the mechanical slider slides in the negative limit direction (negative direction), and Z in the right position along the right side of the origin switch signal, inside of the effective range of the origin switch signal.

When the machine is within the origin switch range (mechanical motion trajectory 2), the origin can be found by directly running in the positive direction. When the machine is outside of the origin switch (mechanical motion track 1 and 3), the machine runs in a constant direction (negative direction) toward the limit switch. According to the detected sequence of the origin switch and limit switch, find the movement track and the origin.

Origin mode 13: Refer to origin mode of origin switch, Z phase signal and negative limit (adopt Z phase signal of positive origin switch right of left edge)

As shown in the figure above, the mechanical slider slides in the negative limit direction (negative direction), and Z in the left position along the right side of the origin switch signal, inside of the effective range of the origin switch signal.

When the machine is within the origin switch range (mechanical motion trajectory 2), the origin can be found by directly running in the negative direction. When the machine is outside of the origin switch (mechanical motion track 1 and 3), the machine runs in a constant direction (negative direction) toward the limit switch. According to the detected sequence of the origin switch and limit switch, find the movement track and the origin.

Origin mode 14: Refer to origin mode of origin switch, Z phase signal and negative limit (adopt Z phase signal of positive origin switch left of left edge)

As shown in the figure above, the mechanical slider slides in the negative limit direction (negative

direction), and Z in the left position along the left side of the origin switch signal, inside of the effective range of the origin switch signal.

When the machine is within the origin switch range (mechanical motion trajectory 2), the origin can be found by directly running in the negative direction. When the machine is outside of the origin switch (mechanical motion track 1 and 3), the machine runs in a constant direction (negative direction) toward the limit switch. According to the detected sequence of the origin switch and limit switch, find the movement track and the origin.

E.5 Examples

Case 1) Using uniaxial relative motion instruction

```
PROGRAM COMMENTS
Function: use for uniaxial point to point control (uniaxial fixed length drive)
output fixed pulse with one call, by setting the maximum, minimum speed and
acceleration time, the output pulse will gradually accelerate to the maximum speed
when starting up. When the pulse is about to run out, the pulse frequency will
automatically reduce to prevent vibration or jamming caused by too much inertia of
the machine when starting or stopping.
MO. 0-
             -emergency stop bit
          ----Q0.0 is pulse output, Q0.1 is direction output
Axis 0-
VD0-
         ----start/stop speed
VD4-
            --normal speed after acceleration
VD8-
             -acceleration time(ms)
VD12-
             -pulse number to output
VB17-
              -output status byte
VD18-
              -output pulse number
VD22-
             -current output pulse speed(frequency)
```


Appendix

Case 2) Using uniaxial speed motion instruction

Case 3) Using two-axis line interpolation motion instruction

```
PROGRAM COMMENTS
Function: line interpolation in any plane area and any two axes.
MO.O-----QO.2 is pulse output, QO.3 is direction output
Axis 3-----Q0.5 is pulse output, Q0.7 is direction output
        -----long axis start/stop speed
VD0----
VD4-----normal speed after long axis acceleration
         -----ACC/DCC time(ms)
VD8---
VD12---
          ---- virtual A axis terminus (relative) coordinate
       -----virtual B axis terminus (relative) coordinate
VB16---
MO.1-----enable run bit
          ----output status byte
VB21--
VD22-----A axis current position (relative coordinate, actual output pulse number
for this call)
VD26-----B axis current position(relative coordinate, actual output pulse number
for this call)
VD30-----current actual speed(frequency)
```


Case 4) Using two-axis arc interpolation motion instruction

PROGRAM COMMENTS
Function: circular interpolation in any plane area and any two axes.
MO. 0emergency stop bit
MO. 1clockwise or counterclockwise interpolation sign bit
MO. 2full circle sign bit (1-full circle, 0-arc)
Axis 0Q0.0 is pulse output, Q0.1 is direction output
Axis 2Q0.4 is pulse output, Q0.5 is direction output
VD0long axis start/stop speed
VD4normal speed after long axis acceleration
VD8arc radius
VD12 virtual A axis terminus (relative) coordinate
VB16virtual B axis terminus (relative) coordinate
VD20ACC/DCC time(ms)
MO.3enable run bit
VB25output status byte
VD26A axis current position(relative coordinate, actual output pulse number
for this call)
VD30B axis current position(relative coordinate, actual output pulse number
for this call)
VD34current actual speed(frequency)

VD16-MAX_SPEED VD20-TA M0.3-EUN

F Using SM231 Weighing Module and the Library

Weighing module converts the voltage signal of weighing sensor to digital AIW, the function of SM231 weight module is to turn it into actual weight.

Figure F-1: The principle of measuring weight

You can obtain the linear relationship equation between weight and analog value via point a and b from diagram above, then you can get the actual weight of AIW. So as to get the coordinate value of point a and b, you need adjust zero and calibrate.

Zero Setting and Calibration method:

First suppose the weighting sensor has fixed to the horizontal direction, and the pallet has horizontally fixed on the weighting sensor.

When setting zero, don't put anything on the the pallet, you can get the Zero-analog value while it is stable.

When calibrating, the weights for calibrating are placed to the pallet, you can get the calibration analog value while it is stable.

F.1 Weighing Library Function Illustration

Weighing module correspond to weighing library EM231_7WA_LIB (V1.4), library files download address: www.co-trust.com

Weighing library instructions parameter:

Weighing library configuration

Yeight_Conf~:FC2 EN	
ParaLi~ Channe~	

Name: Weight_Config

2 Function: Set channel numbers and its starting address

③ Parameter

Name	I/O	Туре	Range	Default	Description
EN	IN	BYTE			Enable end
ParaListBase	IN	DWORD			Set startup address pointer to store parameter table, refer to parameter table below for detailed info. There must be a "&" before entering operation.
ChannelNum	IN	BYTE	0~255		Set total connected channel number of SM231

Note: This function must be called for a time and execute in the first loop cycle. For N channels, ChannelParaNum * N bytes are occupied in all. It is a must to ensure that the V memory parameter table occupied not overrange and not cover space of other program.

72 bytes are occupied each channel when weighing library is called, table below is the parameter definition the storage saved (take VB0 of channel 0):

Parameter table

Parameter	Address	Explanation	Note
Mode	VB0	Mode	Basic/expand mode
Sensitivity	VB1	Sensitivity of sensor	
LimitFreq	VB2	Frequency of LPF	
FilterDepth	VB3	Filter depth	0-255, 0 or 1 means without average filtering
WeightRange	VW4	Max weight range	
FirCalWeight	VW6	First calibration of weight	
SecCalWeight	VW8	Second calibration of weight	
TareInput	VW10	Tare input	
MinWeight	VW12	Minimum weight range	General 20d, d is digital step
Step	VB14	Digital step	Range: 1, 2, 5, 10 and 20
StandstillTime	VW15	Pause time	Unit: ms
StandstillRange	VW17	Pause range	
ZeroValue	VW19	Zero sample value	
FirCalValue	VW21	First calibration of sample	
SecCalValue	VW23	Second calibration of sample	
GWProcessValue	VW25	GWProcessValue	
NWProcessValue	VW27	NWProcessValue	
TWProcessValue	VW29	TWProcessValue	
AnalogValueInit	VW31	Sample value before filter	
AnalogValue	VW33	Sample value after filter	
GrossWeight	VW35	GrossWeight	
NetWeight	VW37	NetWeight	
TareWeight	VW39	TareWeight	

Status_I	VB41	"Weight_Init" status byte	
Status_D	VW42	"Weight_Default" status word	
Status_E	VB44	"Weight_Extend" status byte	
InternalVariable1	VB45	Internal variable 1	
AQWx	VW46	L area backup	
AQWx2	VW48	L area backup	
LB21_D	VB50	Weight_Default L area backup	
LB57_D	VB51	Weight_Default L area backup	
LB58_D	VB52	Weight_Default L area backup	
LB59_D	VB53	Weight_Default L area backup	
LB59_E	VB54	Weight_Extend L area backup	
LW36_E	VW55	Weight_Extend L area backup	
LD40_E	VD57	Weight_Extend L area backup	
Reserved	VB61	Reserved	
ZeroTraceTime	VD62	Zero Trace Time	
StandBeginTime	VD66	Begin time from pause status	
ZeroTraceValue	VW70	Zero Trace Value	

Weight initialization library

① Name: Weight_Init

② Function: Configure sensitivity, low pass filter cutoff frequency and average filter depth of sensors which connect to weighing module.

③ Parameter

Name	Description	I/O	Туре	Value range	Note
Channel	Channel number	IN	BYTE	-	0~6
					1: Eigenvalue range 1mV/V
Sensitivity	Sensor sensitivity		BYTE	2	2: Eigenvalue range 2mV/V
Constanty	Ochion Schollwry	111/001	DITE	2	4: Eigenvalue range 4mV/V
					No other definition
LimitFreq	Low pass filter cutoff frequency	IN/OUT	BYTE	4	3: fg = 5Hz 4: fg = 2Hz 5: fg = 1Hz 6: fg = 0.5Hz 7: fg = 0.2Hz 8: fg = 0.1Hz 9: fg = 0.05Hz No other definition
Filter	Average filter		BYTE	15	0~255, 0 or 1 indicates no
Depth	depth		DITE	10	average filter
AQWx	First analog output of weighing channel	OUT	WORD		Format: "0x53"+"Sensitivity"
AQWx2	Second analog output of weighing channel	OUT	WORD		Format: "LimitFreq "+"FilterDepth"
Status	Status byte	OUT	BYTE		Bit0: eigenvalue error Bit1: Low pass filter frequency setting error

Note: Call this instruction by SM0.0

Refer to *F.2 Weighing Library Mode Explanation* for parameter explanation about sensitivity, LPS cutoff frequency and average filter depth.

Weighing standard library

Name: Weight_Default

2 Function: Calibration, zero set and measurement

③ Parameter

Name	I/O	Туре	Range	Default	Explanation
Mode	IN	BOOL			0: basic mode 1: expand mode
LoadFacSettin	IN	BOOL			Load factory setting, effective at rising
g		DOOL			edge
ZeroSet	IN	BOOL		5461	Zero setting, effective at rising edge
FirCalibrate	IN	BOOL			First calibration, effective at rising edge
SeekTare	IN	BOOL			Calculate tare, effective at rising edge
DeleteTare	IN	BOOL			Delete tare, effective at rising edge
AnalogValueIn	INI	WORD			Analog value before filter, corresponding
it	IIN	WORD			to first input of weight channel
	INI				Analog value after filter, corresponding to
Analogvalue	IIN	WORD			second input of weight channel
Channel	IN	BYTE			Channel No. 0-6
WeightRange	I/O	INT		0~32767	Max weight range(default as 2000)
FirCalW/aight	1/0	INIT	More than	2000	Weight for first calibration(default as
FirCaliveight	1/0		5% of range	2000	2000)
ZeroValue	I/O	WORD			Zero sample value(default as 5461)
FirCalValue	I/O	WORD		60074	First calibration value(default as 60074)
GNWeight	OUT	INT			GNWeight
TareWeight	OUT	INT			TareWeight
Status	OUT	WORD			Status

Note: Refer to appendix *F.2 Weighing Library Mode Explanation* for parameter explanation of mode select, first calibration and tare.

Bit	Name	Range	Description	
Bit0	Power-down alarm	Basic/expansion mode	0: Module power normal, 1: Module no power. When Bit0=1, sampling value is 0xFFFF	
Bit1	Break line alarm	Basic/expansion mode	0: Sensor connection normal, 1: sensor disconnect When Bit1=1, sampling value is 0xFFFE	
Bit2	Outrange alarm	Basic mode	1: Rough weight≥rated weight, sampling value is 0xFFFD	
DILZ	Max+9e	Expansion mode	1: Rough weight≥rated weight +9e. e is digital step	
Bit3	Tare decided	Basic/expansion mode	1: Tare storage has been occupied(tare process value≠0)	
Bit4	Tare preseted	Expansion mode	1: Preset tare	
Bit5	1/4d	Expansion mode	1: Rough weight<±0.25d, d is digital step	
Bit6	Pause	Expansion mode	1: Ensure pause status	
Bit7	Zero be found	Basic/expansion mode	1: Find zero already	
		Basic mode	1: Complete once calibration	
Bit8	Calibrated	Expansion mode	1: Complete first calibration (second calibration weight 0)or complete first and second calibration	
Bit9	Low weights	Expansion mode	1: Current weight <minimum range<="" td="" weighing=""></minimum>	
Bit10	Execute only in pause status	Expansion mode	1: Find zero and tare must be paused in expansion mode	
Bit11	Execute only in zero status	Basic/expansion mode	1: Zero set before first or second calibration	
Bit12	Execute only in calibrated status	Basic/expansion mode	1: Calibrated before measure or preset tare	
Bit13	Calibrated weight too small	Basic/expansion mode	1: First calibration weight and zero; the weighin difference between second and first calibration cannot be less than 5%FS	
Bit14	Illegal tare	Basic/expansion mode	1: Tare cannot be less than 0 or more than maximum weighing range	
Bit15				

Status note:

Weighing extension library

 $\textcircled{1} \text{ Weight}_\text{Extend}$

(2) Function: Realize second calibration, set minimum weight, digital phase step, pause status detection and preset tare.

Name	Description	I/O	Туре	Value range	Note
SecCalibrate	Second calibration, effective in rising edge	IN	BOOL		
TarePreset	Preset tare	IN	BOOL		
Channel	Channel number	IN	BYTE		0-6
SecCalWeight	Weight of second calibration	IN/OUT	INT	0	0 indicates no second calibration
MinWeight	Minimum weight	IN/OUT	INT	20	This weight value can only use for calibration records with specified digital steps above the minimum weight. The minimum weight depends on the type of sensor.
Step	Digital phase step	IN/OUT	BYTE	1	Range is 1, 2, 5, 10, 20, no other definition
StandstillTime	Pause time	IN/OUT	INT	1000	Unit: ms
StandstillRange	Pause range	IN/OUT	INT	10	
TareInput	Tare input	IN/OUT	INT	0	Preset tare
SecCalValue	Second calibration analog value	IN/OUT	WOR D	0	
Status	Status byte	OUT	BYTE		

③ Parameter

Status note:

Bit	Name		Note
D:40	Weight of se	econd	The weighing difference between second and first
ыю	calibration is too smal	I	calibration cannot be more than 5%FS
Bit1	Digital phase step erro	or	Digital phase step can only be 1, 2, 5, 10, 20
Bit2	Pause time error		Pause time must>0

Bit3	Pause range error	Pause range must>0
Bit4	Preset tare outrange	Preseted tare cannot be negative or outrange
Bit5	Reserved	
Bit6	Pause	Ensure pause status
Bit7	Illegal channel	

F.2 Weighing Library Mode Explanation

This section shows important parameters of each instruction and operation notes.

1. Weight_Config

Call it by SM0.1, where ParaListBase set the startup address pointer and its memory range of specified parameter list, each channel occupy 72 bytes; ChannelNum connect SM231 channel number which can only more than or equal to actual one for you

2. Weight_Init

Call it by SM0.0, you can modify Sensitivity, LimitFreq and average Filter depth which will be given a value in factory setting(modify sensitivity before calibration, and anytime to modify for the other two).

• Sensitivity

According to eigenvalue of weighing sensor, 1mV/V, 2mV/V or 4mV/V can be selected.

For example: if the eigenvalue of weighing sensor is 2.85mV/V, the next higher eigenvalue must set as 4mV/V.

• Cutoff frequency of low pass filter

Equip a low pass filter conduct electricity in critical condition in modules to barrage jamming. Figure below shows step response of digital lowpass filter at fg=2Hz:

Define appropriate cutoff frequency to resist disturbance. The reaction speed that weighing module to measurement is set by defining limiting frequency.

For example: the weighing module shows quick response at 5Hz cutoff frequency, but much slower at 0.5Hz.

• Average filter depth

Filter can smooth the weighing value and resist disturbance. The last weight is an average of n measurements; 50Hz sample frequency means weigh every 20 ms. For example, filter depth n=10 represents taking 10 measurements for average value and recalculate every 20ms.

If the interfering frequency integral multiple of "1/(filter depth * 20 ms)", then the average filter will realize brilliant damping of cycle disturbance.

3. Weight_Default

Call it by SM0.0, set Mode 1 for second calibration. The parameter will automatically assign value when using 231-7WA module for first time with loading factory setting. Refer to instruction explanation before for details.

Mode explanation

Weighing module SM231-7WA offers 2 usages by configure parameter in "Mode" of "Weight_Default' to select basic mode or expansion mode.

1) Basic mode (Mode=0)

- (1) Call "Weight_Config", "Weight_Init" and "Weight_Default";
- (2) Supported following functions:
- Set sensor sensitivity, low pass cutoff frequency and filter depth;
- Load factory parameter;
- · Set maximum weighing range;
- Set zero;
- First calibration;
- Measure tare;
- Delete tare;
- Read sampling value both before and after filtering;
- Power-down alarm, line broke alarm, outrange alarm and set zero etc.

2) Expansion mode (Mode=1)

(1) Call "Weight_Config", "Weight_Init", "Weight_Default" and "Weight_Extend";

- (2) Support following functions:
- Supported all functions in basic mode;
- Set minimum weighing range;
- Second calibration;
- Preset tare;
- Set Digital phase (set minimum range scale, show in 1×10^k, 2×10^k or 5×10^k)
- Ensure pause status (set pause status when setting zero and tare)
- Newly added status: Max+9e (GB/T 7724-2008), Preseted tare, 1/4d (GB/T 23111-2008), pause, low weight;

Trace zero

• Tare

Packing material Weight of commodity that is the weight of transport package.

For example, GNweight value is the weight of car before weighing which turn to 0 after SeekTare breakover by uprising edge, and Tareweight replace the GNweight value before.

Weighing after loading with cargo, the GNweight value is net weight. Which means GNWeight is rough weight without tare and become net weight with tare.

• First calibration

It is electricity signal that the module receive from sensor, which is not corresponding to weight without calibration.

For example, put a 1000g weight on the weighing machine, the actual value of GNweight will set by first calibration. If you put 1000g weight and set FirCalweight 2000(200g), the GNweight will turn every object weighing 1000g into 200g. So the first calibration is very important.

4. Weight_Extend

Call it by SM0.0 only when expansion mode (mode=1), to do second calibration, presetting tare, setting digital steps and starting zero tracing.

Pause time

Pause monitor can be used to identify when the weighing machine would stay at a balance status as well as the static operation (mainly zero sample and tarring). If the change of weight is less than specified deviation range (pause value) in a required time (pause time), then the weighing machine is sure paused.

Digital step

Define digital step as 1, 2, 5, 10 or 20.

Zero tracing

Zero tracing can be used to eradicate zero drift after long time using scale, which will be effective after breakover.

With this function, when the absolute value of rough weight/net weight is less than threshold for a while, write the current analog value after filtering into zero one and save the former analog, the output of rough weight/net weight is 0.

The origin zero analog will be written back after cancel this function. The maximum range for zero tracing is 10d (d is digital step), the overrange value is invalid.

Preset tare

TareInput is input tare which shows value of Tareweight after TarePreset breakover by uprising edge with a written tare value. Tare value turns to 0 after DeleteTare breakover.

For example, TareInput value set as 500 without anything on weighing machine. The TareWeight becomes 500 after breakover of TareInput instruction, the GNweight becomes -500 along with TareWeight turns 0 after deleting theDeleteTare instruction.

The similarity and differentia between preset tare in Weight_Extend and tare in Weight_Default:

Differentia:

TareInput can be random set to be displayed tare value, no matter you put an object or not. GNweight owns value to tarring which is GNweight value only when object put inWeight_Default instruction.

Similarity:

Delete tare by using uprising edge breakover DeleteTare so back to status before tarring. After tarring, value of GNweight is former one subtract tare.

Second calibration

Secselweight is weight value of second calibration (set 1000g weight as 10000).

Note: the difference value of weight between first and second calibration must be more than 5% of range.

Put weight on weighing machine for second calibration when Weight_Extend status Word becomes 64 (ensure pause status) after first calibration.

For more details about weighing modules visit: http://www.co-trust.com

G SM277A Module

[Main feature]

- > Adopt a photoelectric isolation technique, high reliability and strong anti-interference ability.
- Integrated terminal resistance, the bus adopt connection mode, no need dedicated network tap.
- The power supply includes anti access protection and Surge absorption function, it's suitable for bad industrial environment.

【Terms of use】

- The signal wire should use shielded twisted pair wires, and the double end of the shielded wire should connect to the ground.
- The grounding terminal should connect to the earth wire while the system is under good grounding cases.
- > If it's the last station, the terminal resistance should set to the ON position.

PROFIBUS-DP network

[Communication]

PROFIBUS-DP network connect to SM277A DP slave station module by its DP communication port, while SM277A DP slave station module connect to CTH200 CPU through serial I/O bus. SM277A use terminal to connect PROFIBUS network without using standard connector.

[Function]

SM277A is a modular slave station device for PROFIBUS DP networks that can connect up to 6 extended modules for digital or analog I/O.

As a DP slave station, the SM 277A module can run on any PROFIBUS baud rate between 9600 and 12M. Also receives a variety of I/O configurations and different amounts of data from the main station and sends data to the main station. The SM277A can also read and write variable data blocks defined in the CTH200 CPU, allows user to exchange any type of data with master station.

MPI network

[Communication]

The SM277A module communicate with other master stations on the same network such as PG/PC programming station, Copanel HMI or S7-300/S7-400CPU as an MPI slave station. Use XGET/XPUT instruction function of S7-300/400 and other main station modules to provide the network communication between MPI main station and CTSC-200. When the SM277A module conducts MPI communication, the MPI master station must use its station address to send information to the CTH200 CPU. The MPI information sent to the SM277A module will be transmitted to the CTH200 CPU via SM277A.

[Function]

SM277A is a slave station device for MPI networks that can connect up to 6 extension modules for digital or analog I/O.

As MPI slave station, the SM277A module can be run at any MPI baud rate between 9.6K and 12M. Also receives a variety of different I/O configurations and different amounts of data from the master station and sends data to the master station, and SM277A can also read and write variable data blocks defined in the CTH200 CPU, allows the user to exchange any type of data with the master station.

Components of SM277A

Status LED is located on the front of the module, address switch, terminal resistance switch ,DP slave interface terminal and user power supply are located on the side of wiring terminal, see as following figure:

- Status LED
- Terminal resistance switch: ON means with terminal resistance, OFF means without terminal resistance.
- Isolated signal A1
- Isolated signal B1
- Isolated signal A2
- Isolated signal B2
- User Power supply
- Address switch: Setup by 8 bits dial switch, and expressed in binary form, the available range is 0~126.

Note

A1/B1 and A2/B2 are both RS-485 electric port, consistent internal electric characters, you can choose to connect one or two group.

PROFIBUS DP communication between S7-300 and SM277A of CTH200

PROFIBUS DP communication between S7-300 and SM 277A of CTH200 need S7-300 station

configuration in STEP7, no need to configure and program the communication in CTH200 system, just sort out the data to be communicated and store it in the V storage area corresponding to the hardware I/O address of S7-300 configuration SM277A slave station.

Write program to call FC1 (DP_SEND) and FC2 (DP_RECV) in OB1, DP master can read and write from the slave station data to achieve S7-300 and CTH200 CPU communication. Execute the DP_SEND instruction to output the memory data of CTH200 CPU to the SM277A extension module. By performing DP_RECV, input the SM277A extension module data to the memory of CTH200 CPU.

Figure G-1 shows a PROFIBUS network with CTH200 CPU and SM277A DP slave station module.

Figure G-1 PROFIBUS network example

- ➢ Use S7-300 with CPU 315-2 as the DP master station, and configure with STEP 7 programming software.
- > CTH 200 CPU is DP slave station of CPU 315-2 DP master station.
- CPU 315-2 DP master station use DP_SEND and DP_RECV of user program to read and write data from CTH200.

Note: To use SM277A as a DP slave, you must set the DP port address that matches in the master group. The slave station address is set by DIP switch of SM277A module.

MPI communication between S7-300 and SM277A of CTH200

When CTH200 CPU and S7-300 conduct MPI communication, no need to write any program related to communication in CTH200 PLC, just set the data for exchange into continuous V storage area, and in S7-300 need to call system function X_GET (SFC67) and X_PUT (SFC68) in OB1 (or timer interrupt tissue block OB35) to realize the communications between S7-300 and CTH200 CPU, When call SFC67 and SFC68, the VAR_ADDR parameter is filled in the data address area of CTH200, where P# db1.* ** BYTE n corresponds to the data area from VB ** to VB (* * +n) in the CTH200 CPU V storage area.

Figure G-2 shows an MPI network with CTH200 CPU and EM277A DP slave station module.

Figure G-2 MPI network example

- Use S7-300 master station module, PG\PC program station and Copanel HMI as MPI master station
- > CTH200 CPU is a MPI slave station
- Use XGET / XPUT instruction of S7-300/400 master station module to read and write data from CTH200.

Note: Set the slave station address (NEST_ID) the same with dial code address of SM277A module

H SM277B Module

SM277B, connect with 6 digital or analog I/O expansion modules at most, is a modular slave station device for PROFIBUS DP network, which could communicate with DP master station. With terminal connecting PROFIBUS network instead of standard connectors, the baud rate is automatically adjusted to be consistent with the main station.

[Main feature]

- Photoelectric isolation technique, strong anti-interference ability, high reliability.
- Power supply with reverse connection protection and surge absorption function, suitable for harsh industrial environments.

【Terms for use】

- Signal lines should be shielded twisted-pair cable, and double side grounding.
- Ground the module earthing terminal under the condition of the system has a good grounding, otherwise not grounded.
- As the last station, termination resistors should be ON position

H.1 PROFIBUS-DP Network Structure

Distributed I/O systems contain active (master) and passive (slave) nodes that are interconnected through PROFIBUS-DP.

The following figure shows SM 277B in a typical PROFIBUS-DP network configuration:

Figure H-1 Construction of SM277B PROFIBUS-DP network

H.2 Components of SM277B

Figure H-2 SM277B structure

1 Status LED

② Terminal resistance option switch: ON indicates with terminal resistance, OFF indicates without terminal resistance

- ③ Isolated signal A (network input)
- ④ Isolated signal B (network input)
- (5) Isolated signal A (network cascade)
- 6 Isolated signal B (network cascade)
- ⑦ User power
- (8) Sensor power

④ Address switch: set with 8 bit DIP switch, indicates in binary number, effective option range is 1-125

H.3 Operating Guide

This section introduces how to use SM277B, combined with "CPU312-1AE13 and SM277B communication" example gradually introduced SM277B hardware configuration, user programming and debugging as well as system diagnosis.

Figure H-3 SM277B network structure

Components in this example

Components	Explanation		
A DC/DC with STEP7	Version of STEP 7 must support to configure DP		
	master station		
MPI program cable	For programming(download network hardware,		
	program and monitor data)		
A DP master station system	A CPU312-1AE13, a CP 342-5(as master)		
CTH200 SM 277B	DP slave station device		
	PROFIBUS cable must have a standard		
A PROFIBUS communication cable	PROFIBUS connector to connect DP master		
	station		
An expansion module connect to	Such as CTH200 SM223-1BI 32 module		
SM277B	Such as officer Sivizes-TDES2 Module		

H.3.1 Hardware Configuration

Steps:

1) Start SIMATIC Manager

Select "File" -> "New", enter project name and select catalogue to save project in dialog box.

2) Create a SIMATIC 300 station

Select station in use (such as: SIMATIC 300 station)

Figure H-4 Insert SIMATIC 300 Station

3) Open HW-Config to configure hardware

Double click the inserted 300 station "SIMATIC 300(1)" in step 2), as shown below:

Figure H-5 HW-Config Interface

Double click "Hardware" in picture above to open HW-config interface, set distribute I/O (DP) rack, modules and PROFIBUS connection

4) Add guide rail

First add guide rail for station in use (Rail), use it to install DP master station

Appendix

Figure H-6 Add Guide Rail

5) Add Power Supply (optional)

Add power to guide rail. The power can only be placed in the first slot of the rack.

6) Add DP master station CPU and PROFIBUS connection (CP 342-5)

Drag the CPU of the DP master station actually used in the hardware directory to the second slot of the guide rail or double click to add it, then drag the CP 342-5 actually used in the hardware directory to the fourth slot of the guide rail, as shown in the figure below:

🌉 HW Config - SIMATIC 300(1)			- - ×
<u>Station Edit</u> Insert <u>P</u> LC <u>V</u> iew	<u>Options</u> <u>W</u> indow <u>H</u> elp		
D 🚅 🔓 🖳 🐘 🎒 Pa 🗈	🖄 🏜 📳 🞞 🐮 📢		
SIMATIC 300(1) (Configuration	Properties - PROFIBUS interface CP 342-5 (R0/S4)		× d: nt ni
= (0) VR	General Parameters		fil Standard 💌
1 2 K CPU 312 3	Address: 2 💽	If a subnet is selected, the next available address is suggested.	SIMATIC 300 Image: CP-300 Image: CP-300 <t< td=""></t<>
< III (0) UR	Subnet:	<u>N</u> ew P <u>r</u> operties De <u>l</u> ete	
S N odule C	ОК	Cancel Help	CPU 313 CPU 313 CPU 313 CPU 313 CPU 313 CPU 313 T 342-50A00-0XE0 T 342-50A00-0XE0 T 342-50A00-0XE0 T 342-50A00-0XE0 T 342-50A00-0XE0 T 542-50A00-0XE0 T 542-50A00-0XE
Insertion possible			Chg //

Figure H-7 Add DP Master Station CPU

In the dialog box above, set the PROFIBUS CP 342-5 interface address (as 2), and click the "New" to add a PROFIBUS connection for the DP master station. In the "Properties" dialog box, set the network parameters you need, including the transmission rate (set by default 1.5m by) and the configuration file (select "DP"), as shown below:

Properties - New subnet PROFIE	BUS	×
General Network Settings		
Highest PROFIBUS Address:	126 – Change	Qptions
Iransmission Rate:	45.45 (31.25) Kbps 93.75 Kbps 187.5 Kbps 500 Kbps 1.5 Mbps 3 Mbps ✓	
Profile:	DP Standard Universal (DP/FMS) User-Defined	<u>B</u> us Parameters
ОК		Cancel Help

Figure H-8 Master Station Network Setting

Click "OK" to add the CPU and PROFIBUS connections of DP master station. After confirmation, set the data I/O address and working mode of CP 342-5d. Double-click CP342-5 on the guide rail, and the properties dialog box pops up, as shown below:

Properties - CP 342-5 - (R0/S4)	×
General Addresses Operating Mode Diagnostics	
Short Description: CP 342-5	
PROFIBUS CP: DP protocol, SEND/RECEIVE interface, S7 communication (server)	×
Order No: 6GK7 342-5DA00-0XE0	
<u>N</u> ame: CP 342-5	
Interface Type: PROFIBUS Address: 2 Networked: Yes Properties Comment:]
OK	Help

Figure H-9 Set CP 342-5D I/O Address

Set CP 342-5 I/O address

In the 【Address】 of the properties dialog box, the "Input" and "Output" start addresses are set by default (the default is 256 (16#100, the subroutine's CPLADDR parameter use this value).

Set Operating Mode of CP 342-5

Set CP 342-5 "DP master station" in [Operating Mode] of properties dialog box:

Properties - CP 3	42-5 - (R0/S4)		X
General Addr	esses Operating Mode Diagnostics		
C <u>N</u> o DP			
OP master	er		
DP <u>d</u> elay t	time [ms]:	0	
Estimated	DP reaction time incl. delay time [ms]:		
	with global controls [ms]:		
		<u>R</u> ecalculate	
⊂ DP <u>s</u> lave			
🔽 Commi	issioning/ <u>t</u> est mode		
Master:	Station:		
	Module:		
	Rack (R) / slot (S):		
	Interface module slot:		
ОК		Cancel	Help

Figure H-10 Set CP 342-5D Work Mode

A dialog box pops up indicating that must call FC1 (DP_SEND) and send FC2 (DP_RECV).

After setting CP342-5 property, a PROFIBUS DP master station system will be automatically added in the blank on the right, as shown in the figure below:

👝 (O) VR			
1 2 3 4 5 6 7 8	CPV 312	< = >	PROFIBUS(1): DP master system (180)

Figure H-11 CP 342-5D Attribute Set

1) Import GSD file of SM277B

First use of SMC277B, you must import GSD file involving device information in STEP 7, otherwise skip this

Install method:

In "HW Config" interface, select menu [Operations] - > [Install GSD Files], click "Browse…" to open the 277b GSD file directory in the "Import GSD files" dialog, then click "OK", show as second figure, select "ct277B. gsd", then click the "Install", after the installation click the "Close" to complete the SM277B GSD file installation.

<u>O</u> pt	ions <u>W</u> indow <u>H</u> elp		
	Customize	Ctrl+Alt+E	
	Specify Module		
	Configure Network		
	Symbol Table Ctrl+Alt+T		
	Report System Error		
	Edit Catalog Profile		
	Update Catalog		
	Install HW Updates		
	Install GSD File		
	Find in Service & Support		
	Create GSD file for I-Device		

Figure H-12 Import GSD File

Install GSD Files	x
Install GSD Files: from the directory	
D:\项目资料汇总\CTSC-200 系列PLC\过程资料\EM277B GSD文件\EM_277B_GSD_V104Browse	
File Release Version Languages	
ct277B.gsd — Default	
EM 277B PROFIBUS-DP (CTS7 277-OAB32)	
Install Show Log Select All Deselect All	
Turner From Tak	
Close Help	

Figure H-13 Install GSD File

Note

Visit http://www.co-trust.com to download GSD file of SM277B.

You can see information of SM277B and its expansion module in "HW-Config" directory as figure below:

🖻 🧰 I/O		
🚊 🧰 co-tru	ist	
🕂 🚡 EM	277B PR0	DFIBUS-DP
🖻 – 🚡 SM	277B PR0)FIBUS-DP (GSD V1.0)
···· .	Univers	al module
[]	SM 221	8 DI 24 VDC (221-18Fxx)
	SM 221	16 DI 24 VDC (221-1BHxx)
	SM 221	32 DI 24 VDC (221-1BLxx)
	SM 222	8 DO 24 VDC (222-1BFxx)
	SM 222	8 DO Rly (222-1HFxx)
	SM 222	16 DO Rly (222-1HHxx)
	SM 222	16 DO 24 VDC (222-1BHxx)
	SM 222	32 DO 24 VDC (222-1BLxx)
	SM 223	4/4 DC/DC (223-1BFxx)
	SM 223	4/4 DC/Rly (223-1HFxx)
	SM 223	8/8 DC/DC (223-1BHxx)
	SM 223	8/8 DC/Rly (223-1PHxx)
i i 🖬	CM 203	16/16 DC/DC (223-181vv)

Figure H-14 SM277B information

2) Add SM 277B DP slave station

Drag SM 277 PROFIBUS-DP from the hardware directory to the "PROFIBUS (1): DP master station system (180)". As shown in the figure below, set the SM277B slave station and network in the property dialog box that pops up.

Properties - PROFIBUS interface EM 277B PROFIBUS-DP	2
General Parameters	
Address:	
Transmission rate: 1.5 Mbps	
<u>S</u> ubnet:	
not networked PROFIRING(1) 15 Mbpr	<u>N</u> ew
	P <u>r</u> operties
	Delete

Figure H-15 Add SM 277B DP Slave Station

Set slave station address

Set the SM277B slave address in address under parameters of properties box.

Note

The valid address between 1 and 125, and is unique on PROFIBUS DP, also must be set as the address dialed by the DIP switch of SM277B module.

Set slave station network

Click the "Properties" under [Parameters] of the property box, then pop up a child dialog box as shown in the figure below:

Properties - PROFIBUS		x
General Network Settings		
<u>H</u> ighest PROFIBUS Address:	126 V Change	tions
Iransmission Rate:	45.45 (31.25) Kbps ^ 93.75 Kbps 187.5 Kbps 500 Kbps 1.5 Mbps 3 Mbps ✓	
<u>P</u> rofile:	DP Standard Universal (DP/FMS) User-Defined <u>B</u> us Par	rameters
ОК	Cancel	Help

Figure H-16 Set slave station network

Click the [Network Settings] of this dialog box, and set "Transmission Rate" (default as 1.5Mbps) and "Profile" (set as "DP"). Then the addition and configuration of SM277B slave station is completed, as shown in the following figure:

and similaric soo(1) (configuration) sr_Fron	
(0) UR 1 2 3 4 5 6 7 8 ✓	PROFIBUS(1): DP master system (180)
< III	
< III (1) EM 277E PROFIBUS-DP S D DP ID Order Number / Design	ation I Add Q Address Comment
< III (1) EM 277E PROFIBUS-DP S DP ID Order Humber / Design 0 0 Local inputs and output 1 1	ation I Add Q Address Comment
III (1) EM 277B PROFIBUS-DP S DP ID Order Number / Design 0 0 Local inputs and output 1 1 1 2 0 1	ation I Add Q Address Comment
III (1) EM 277B S DP DD D Order Rumber / Design 0 0 1 1 2 3	ation I Add Q Address Comment rfs
III (1) EM 277E PROFIBUS-DP S DP ID 0 Local inputs and output 1	ation I Add Q Address Comment

Figure H-17 slave station properties configuration

Note: ensure that the "Hex parameter assignment" of the [Parameter Assignment] of the SM277B slave station property is set by default, as shown in the figure below (00,00,00) (double-click the SM277B icon to see), otherwise there may be a communication failure.

Properties - DP slave		x
General Parameter Assignment		
-	· · · ·	_
Parameters	Value	- 1
E Station parameters		
🗄 🔄 Hex parameter assignment		
└≝ User_Prm_Data (0 to 2)	00,00,00	
1		- 1
ОК	Cancel Help	

Figure H-18 DP slave station parameter assignment

* Add expansion modules for SM277B slave station

Drag or double click the required extension module to the EM 277B blank slot number in the order you need from the hardware directory "SM 277B PROFIBUS-DP" to add DP slave station extension module, as shown in the following figure:

Appendix - • × HW Config - SIMATIC 300(1) <u>Station Edit Insert PLC View Options Window H</u>elp 🗅 🚅 💱 📓 🖏 🎒 🐚 💼 💼 🏜 🌆 📼 🧏 😥 - • × 💵 SIMATIC 300(1) (Configuration) -- S7_Pro Find m† mi 🗩 (0) VR Profil Standard -🗀 I/0 CPU 312 Ė~**⊇** co trust EM 277B PROFIBUS-DP CP 342-5 Universal module WS(1) DP master system (180) Universal module EM 221 8 DI 24 VDC (221-1BFxx) EM 221 8 DI 24 VDC (221-1EFxx) EM 221 16 DI 24 VDC (221-1BFxx) EM 221 32 DI 24 VDC (221-1BFxx) EM 222 4 D0 VDC-5A (222-1BFxx) EM 222 4 D0 10A Rly (222-1HDxx) ₩ (1) EM 27 I EM 222 8 DO 24 VDC (222-1BFxx) EM 222 8 DU 24 VDC (222-16Fxx) EM 222 8 DU VAC (222-16Fxx) EM 222 8 DO RLy (222-1HFxx) EM 222 16 DO RLy (222-1Hfxx) EM 222 16 DO RLy (222-1Hfxx) EM 222 20 0 24 VDC (222-1Hfxx) EM 223 4/4 DC/DC (222-1Hfxx) EM 223 4/4 DC/DC (223-1FFxx) EM 223 4/4 DC/Rlv (223-1HFxx) EM 223 8/8 DC/DC (223-1B4xx) EM 23 8/8 DC/DC (223-1B4xx) EM 223 16/16 DC/DL (223-1F4xx) EM 223 16/16 DC/DL (223-1F1xx) EM 223 16/16 DC/RLy (223-1F1xx) Ш (1) EM 277B PROFIBUS-DP . DP ID Order Number / Designation I Add... Q Address Comment EM 223 32/32 DC/DC (223-1BMax) ocal inputs and output: EM 223 32/32 DC/Rly (223-1PMax) EM 231 2 AI (231-7HBxx) EM 231 4 AI (231-0HCxx) EM 231 4 AI (231-0HCxx) ш ŧ٢ Press F1 to get Help Chg

Figure H-19 Add expansion modules for SM 277B

※ Download hardware configuration to CPU of DP master station

Execute "Station" -> "Save and Compile" in of the HW Config interface.

Till now, STEP7 has completed the hardware configuration. Before sending the configuration, confirm that you have established connection between the DP master station and PC/PG (MPI connection), then execute "PLC" -> "Download" in the same interface to download the hardware configuration to the CPU of DP master station.

H.3.2 Programming and Debugging

SM277B reads input of expansion module for DP master which offer SM277B output information to write into expansion module by using LAD/STL/FBD editor to create program in OB1 and download it into CPU of main system.

[Programming]

Steps:

1) Write program to call FC1 (DP_SEND) and FC2 (DP_RECV) in OB1 to realize the DP master station reading and writing 16 bytes of data from slave station, as shown in the following figure:

Figure H-20 Program interface

Program function description:

Execute FC1 (DP_SEND) to output CPU312 memory MB0-MB14 data to QB0-QB14 of SM277B extension module; input SM277B extension module IB0-IB14 into the MB15-MB29 memory of CPU312 by performing FC2 (DP_RECV).

CPLADDR: Address 256(16#100) of CP342-5

Note

If you select the CPU with DP communication port (e.g., CPU313C-2DP), there is no need to call FC1 and FC2 but directly access the address assigned by configuration SM277B module (e.g., IB0-IB14, QB0-QB14).

2) Save user program

[Debugging]

Steps:

1) Connect CP 342-5 and SM277B, set SM277B address and middle resistance, and connect the power supply of all devices in the system.

2) STEP7 connect to the main station and download the program to the CPU of the main station system.

3) Set the main station as RUN.

4) Set and monitor the I/O data to be transmitted and the status results of program execution in the STEP7 variable scale, observe the output status of the SM277B extension module and status indicator light (LED)

Some faults may occur in the debugging process. Please refer to Appendix H.3.3 Diagnosis

H.3.3 Diagnosis

Diagnose PROFIBUS DP master/slave network through LED status, STEP 7 fault information and specific programming diagnosis.

Diagnose by SM 277B

The LED status for diagnosing SM277B can provide diagnostic information about connection with the main station and self-diagnosis information of SM277B firmware.

After connecting SM 277B power supply, the LED indicator marked "ON" (green) light up.

If the BF and SF LED remain off, SM 277B will function normally.

If the BF or SF LED lights up, indicate an error in the extension module, address setting over range, wiring, or main program configuration.

LED	Color	Description
	Croon	Indicator lights on when SM277B power on, controlled by
ON	Green	SM277B hardware
SE(aveter failure)	Ded	If SM 277B find expansion module fault or address
SF(System failure)	Rea	setting over range, the LED light up
BF(bus failure)	Red	Flicker when no DP exchange with master station

Function of EM277B LED:

If main system run without fault, bellows are the possible fault reasons:

- STEP 7 hardware configuration didn't match completely with equipment in network. You need to change the hardware configuration and download it to the CPU of DP master.
- STEP 7 configure wrong parameter
- The address STEP7 configured is different with SM277B actual PROFIBUS address, or SM277B actual PROFIBUS address set as 126 127(invalid address). If the SM277B actual address is correct, change the PROFIBUS address of the slave station device in STEP 7 and re-download the configuration to CPU of DP master station. If the actual address of SM277B is wrong, change it, after that SM277B needs to be cut off and re-energized.
- Not set the PROFIBUS network terminal resistance correctly. Dial "ON" if you are at the last node in the network, otherwise "OFF".
- PROFIBUS wiring error or PROFIBUS cable damaged. Check wiring and cables to make sure they are correct.

Diagnose by STEP7

【Read diagnosis information in HW-Config】

For all SIMATIC S7/M7 series modules, S7 diagnosis can be called. For the base unit and I/O modules, the structure of S7 diagnostics is the same. To make the diagnosis in STEP 7, read the diagnostic buffer of the main station device or SM 277B.

[Confirm fault]

Confirm faults in HW-Config due to steps below:

- Open project online window through Station >Open ONLINE
- Seek symbols showing diagnostic equipment state and fault condition. Press the F1 to open the help page of the diagnostic symbol to view the comments for the diagnosis.
- Select menu PLC >Faulty Modules to view fault modules list. If there is a failure, the view will not update automatically when open the online view. Select view>update to display the current state.

【Read diagnosis information in master and slave station】

In HW-config, you can open the module information to get detailed diagnostic information. Double-click for displaying the fault modules.

- For DP master, select Diagnostic Buffer symbols to view fault information
- For SM 277B station equipment: select the General symbol to view module status. Select the DP Slave diagnostics TAB, and click the Hex. Format button display the diagnostic bytes of SM277B.

H.3.4 power budget of diagnosis module

SM227B power	5 VDC power	24 VDC power		
	SM 277B offer a 5 VDC logic	SM 277B offer a 24VDC sensor		
Supply	power for all expansion	power for expansion modules or		
modules in system		anywhere needed.		
	The additional electricity			
Maximum usable	sum of all SM277B	Please confirm power demand less		
DC power	expansion modules require	than the budget 400mA		
	less than 660mA			

Power budget of SM277B, including 5VDC and 24VDC, is to calculate if there is sufficient power for its connected expansion modules.

Warning

- Do not use SM277B DC sensor and another external power to power for one device.
- Do not use two powers on one device
- Connecting an external 24VDC power to SM277B 24VDC sensor power supply will cause conflict. Which may result in shortened service life of the power supply or failure of both power supplies, which may then lead to failure of PLC system operation. Accidental operation may result in serious personal injury or even death, and/or equipment damage.

I Permanent V Memory Library "CT_savevmem"

Introduction

CT_SAVEVMEM serves as a library function to save a segment of V memory data which users need into permanent memory for a long time (about one year).

Note

Apply to save parameters, do not save too often.

Do not set power-off hold in the system block for the permanent storage V memory address to be used.

CPU title	Data store space			
H224	Basic 8KB, non-extendable			
H224X	Basic 8KB, extend to 108KB			
H226L	Basic 8KB, non-extendable			
H226XL	Pagia 10KP, extend to 110KP			
H228XL	Basic TONE, extend to TTONE			

Data storage of CTH200 CPU:

Software Installation

1) Add library file

"File" -> "Add/delete library", find library file "ct_savevmem" as figure below:

File	Edit	Insert	PLC	View	Debug	Windows	Help
	New						
в	Open						
	Close						
	Save						
8	Save A	I					
	Proper	ties					
	Import	t					
	Export						
	Create	Library					
	Add/Re	emove Li	brarie	s			
	Library	Memor	y				
	Update	e Lib					
٦	Print						
Q	Print Pr	review					
	Page S	etup					

Click "Add" in dialog box popped up, find "ct_savevmem.ctmwl", click "Save" after you find it, then select "ct_savevmem.ctmwl" in "Add/delete library", click "OK"

🛱 Add / Remove Libraries	x			
The following user-created instruction libraries are included for use in y projects. To make additional libraries available for use, click 'Add' au select appropriate MagicWorks PLC instruction library file (.ctmwl). If you no longer wish to use an included instruction library, select it in the lip below and click 'Remove'. Note that removing an instruction library from th list does not delete the file from the disk.	our nd u st his			
/Lib/motion_ctrl_lib_v13.ctmwl	<u>^</u>			
/Lib/motion_ctrl_module_lib.ctmwl				
./Lib/save vmem v23.ctmwl				
/Lib/scale.ctmwl				
/Lib/sm253_motion_ctrl_lib_V1.0.ctmwl				
/Lib/USS Protocol Port 0 (v2.3).ctmwl				
/Lib/USS Protocol Port 1 (v2.3).ctmwl				
Add Remove OK Cancel				

You can see newly added "ct_savevmem" under directory tree after installation:

2) Call CT_SAVEVMEM library

Click "Network" where you add function block, double click "SAVE_VMEM" under "library", it shows in "Network"

Note

Make sure EN is always ON before completing write, in other Word use sm0.0 or act_en to call.

3) CT_SAVEVMEM library function explanation

Parameter	Explanation	Туре	Note	
address				
atr. addr	Start address of V	WORD	Can be constant or variable.	
Sti_auui	memory	WORD	Start address of VW500 is 500	
			Permanently store the length of contiguous V	
length	Length unit: word	WORD	memory.	
lengin		WORD	Length of VB500-VB4499 is 2000 or 2000 for	
			VW500-VW4498	
		BOOL	When this bit is 1, write permanent memory,	
act_en	Allow write bit		automatically reset after write, and the bit is	
			kept at 1 during the write.	
finished	End write sign bit	DOOL	Automatically reset at the beginning of writing	
IIIIstieu	End white sigh bit	BOOL	and set to 1 at the end of writing.	
Note: total length of write is integer multiple of the Word.				

J SM253 Motion Control Library

J.1 Introduction

SM253 motion control library is dedicated for SM253 motion control module, able to realize multi-axis independent control.

J.2 Installation Instruction

Select menu item "File" -> "Add/Remove Libraries" to find library file "motion_ctrl_module_lib.ctmwl":

View catalogue where you save library files, select "motion_ctrl_module_lib" and click "Add":

Click "OK" after addition, check the library node of command tree, you can see the "motion_ctrl_module_lib":

J.3 sm253_motion_ctrl_lib Instruction List

Table J-1 Library instruction list

Function name	Instruction name	Support or not
MC253_EXT_RESET_EN	External reset coordinate enable instruction	SM253 not support
MC253_INIT_DIR	Configure motor direction instruction	Support
MC253_READ_POS	Read position instruction	Support
MC253_PTP_R	Uniaxial relative motion instruction	Support
MC253_CIRCLE_R	Two-axis arc interpolation motion instruction	SM253 not support
MC253_SPEED_CTL	Speed control instruction	Support
MC253_SET_POS_ZERO	Software back to zero instruction	Support
MC253_SET_POS_PV	Set target location instruction	Support
MC253_LINE_R	Two-axis line interpolation motion instruction	SM253 not support
MC253_EXT_RESET_EN_EXT	External reset coordinate enable instruction II	Support
MC253_SET_MAX_ACCELE	Set maximum acceleration instruction	Support
MC253_SET_CI_MODE	Set continuous interpolation instruction	SM253 not support
MC253_PWM	PWM instruction	Support
MC253_INIT	Initialize motion control module instruction	Support and must be called first

MC252 DO CTRI	Control module output	Support
MC235_DO_CTRE	instruction	
	Read module input status	Support
NC233_READ_DI	instruction	
MC253_HSC_INIT	Set module HSC instruction	Support
MC253_READ_HSC	Read module HSC instruction	Support
MC252 DTD A	Uniaxial absolute motion	Support
NIC233_FTF_A	instruction	
MC253_HOMING	Homing instruction	Support

J.4 sm253_motion_ctrl_lib Library Instruction Explanation

For Micro/Win programming, the instruction format of the operation control module is the same as that of CPU, but differ in the instruction library. Prefix of CPU instruction is MC, while the motion control module EM253 is MC253. The axis number of CPU instruction is 0~3, while the motion control module instruction is numbered from 0, which can be continued down and System automatically assigns to each module. For example, the motion control module instruction axis number is 0~1, which corresponds to the 0 and 1 axis of the first module respectively. The motion control module instruction axis number is 2~3, corresponding to the 0 and 1 axis of the second motion control module respectively. By analogy, if the motion control module out of scope, consider the parameter error. For example, there is only one motion control module (with only two axes), motion control module specifies axis 2, but it cannot find the corresponding value, so that it cannot be used.

Similarly, the module HSC is not uniformly numbered with CPU HSC, which must call the module instruction for use. The module HSC numbered from 0 and can be continued down. For example, the HSC of module instruction label 0~1, which corresponds to HSC0 and HSC1 of the first module respectively; HSC of module instruction 2~3 corresponds to HSC0 and HSC1 of the second module respectively.

※ Attention

1 Initialization and library storage area

Using the SM253 motion control module require to initialize the system control variables in the initial call MC253_INIT of the system program (it is needed only once, that is, only be called by SM0.1). Note that the EM253 motion control module use V memory space. Users can specify the library storage area address themselves through "library storage area allocation". Users are not allowed to use the address space occupied by the library in program. (if only one SM253 module hangs after the CPU, the library occupies 218 bytes; 236 bytes for 2. 254 bytes for 3; 272 bytes for 4. 290 bytes for 5.)

2 Analog filter

When using SM253 motion control module, you must clear filtering function at the corresponding channel of SM253 motion control in the upper computer software system block -> input filter -> analog, and download the system block to the PLC. Otherwise, the SM253 motion control module library instruction cannot be use (check the PLC information, where the 4 in and 4 out

analog module channel is corresponding to that of the SM253 motion control module.).

3 Communication status bit

SM253 newly increased all the communication bit other than MC253_INIT, the status bit will alarm to indicate communication fault and then you should check if the bus connection is normal or the analog filter of motion control channel has been cleared.

4 Pulse output instruction execution order

Coaxial pulse output instructions (MC253_PTP_R, MC253_SPEED_CTL, MC253_PWM) have up to 3 data buffers, that is, only process 3 instructions at the same time. When there are multiple instructions on the same axis (such as all of them are 0 axis), if the buffer unfell (there are less than 3 enabled output instructions), then the new enabled instructions can be processed in time. Then, the execution order of the instructions is consistent with the time order of the enabled instructions, which is not necessarily related to the instructions position order. If the buffer is full, the enabled output command is more than 3), the new enable instruction cannot be processed in time, and can only be enabled after the end of the instruction and release the buffer before according to place order for processing by the program scan, which is related to order of execution and position, but not necessarily according to the time sequence of instructions. Simply understood as "under 3 by time, full 3 by position" (as shown in example 1).

In order to achieve the trajectory, and if the position order of these motion instructions is consistent with the desired trajectory, all these instructions can be enabled at one time. If not, you must enable the corresponding instruction of the enabled trajectory when the enabled instruction is less than 3 (as shown in example 2).

Case 1) Enable all instructions at a time

The enable instruction (instruction A/B/C) is executed in the enable order when the buffer is less than 3 copies. As following table, enable all the five instructions at one time, and the order is: instruction A--> instruction C--> instruction B--> instruction E-> instruction D, as shown in table 1; Then, the enabled 3 instructions are executed successively in: instruction A--> instruction C--> instruction C--> instruction B, as shown in column 3 of table:

Instruction enable order	Instruction	oosition order	Instruction execute order
1	0—AXIS	Instruction A	1
	1—RUN		
2	0—AXIS	Instruction P	2
3	1—RUN		3
2	0-AXIS	Instruction C	2
2	1—RUN	Instruction C	Z
5	0-AXIS	Instruction D	
5	1—RUN		

Appendix

4	0—AXIS 1—RUN	Instruction E	
---	-----------------	---------------	--

The remaining enabled instructions (instruction D/E) execute in position order when the buffer is filled with 3 portions. After the execution of instruction A, the buffer is released. As the program scans from top to bottom, instruction D obtains the buffer first. Instruction E obtains the buffer after instruction C finishes executing and releases the buffer.

The instruction enable order: instruction A--> instruction C--> instruction B--> instruction E-> instruction D, as shown in table 1;The order of instruction execution: instruction A--> instruction C--> instruction B--> instruction D-> instruction E, as shown in table 3:

Instruction enable order	Instruction	position order	Instruction execute order
1	0—AXIS 1—RUN	Instruction A	1
3	0—AXIS 1—RUN	Instruction B	3
2	0—AXIS 1—RUN	Instruction C	2
5	0—AXIS 1—RUN	Instruction D	4
4	0—AXIS 1—RUN	Instruction E	5

Case 2) Enable 3 instructions first, then enable the rest after instructions completely executed to release buffer

The enable instruction (instruction A/B/C) is executed in the enable order when the buffer is less than 3 copies, as following table: enable 3 instructions first, the order is: instruction A -- > instruction C --> instruction B, as shown in table 1, execute in order successively, the execution order is: instruction A -- > instruction C --> instruction B, as shown in column 3 of table:

Instruction enable order	Instruction p	osition order	Instruction execute order
1	0-AXIS	Instruction A	1
	1—RUN	Instruction A	I
2	0-AXIS	Instruction P	2
5	1—RUN		5
2	0—AXIS 1—RUN	Instruction C	2
---	-----------------	---------------	---
	0—AXIS 0—RUN	Instruction D	
	0—AXIS 0—RUN	Instruction E	

After instruction A completes execution and releases the buffer, enable instruction E first, then it obtains the buffer; Instruction D acquires the buffer after instruction C completes execution and releases the buffer.

The order of instruction enable is: instruction A--> instruction C--> instruction B--> instruction E-> instruction D, as shown in table 1;The order of instruction execution is: instruction A--> instruction C--> instruction B--> instruction E-> instruction D, as shown in column 3 of table:

Instruction enable order	Instruction position of	order Instruction execute order
1	0—AXIS Instruct	ion A 1
3	0-AXIS 0-RUN	ion B 3
2	0—AXIS 1—RUN	ion C 2
5	0—AXIS 1—RUN	ion D 5
4	0—AXIS 1—RUN	ion E 4

Configure motor direction instruction

1 Function name: MC253_INIT_DIR

② Function: configure motor direction

Execute one time on first scan cycle of CPU power on

③ Parameter

Note

Name	I/O	Description	Туре	Value range	Note
DIR	IN	Configure effective level when the direction signal is positive. DIR=1, set motor forward when corresponding direction axis output "1" DIR=0, set motor reverse when corresponding direction axis output "0"	Bool	0~1	Default: 1, motor forward when direction axis output
AXIS_NO	IN	Set axis number(2 axes for each EM253 module, axis number range decided by motion control modules number)	Byte	0~255	
STATUS	OUT	Communication status sign bit 1: Communication timeout	Bool	0~1	

Read position instruction

① Function name: MC253_READ_POS

② Function: Read the absolute coordinate value of each axis. Once the origin coordinate is set, the value will calculate according to relationship between the output pulse and direction: positive rotation output a pulse: +1, while reverse output a pulse: -1. What you end up with is an absolute coordinate with the set point as the origin.

Name	I/O	Description	Туре	Value range	Note
AXIS_ NO	IN	Set axis number(2 axes for each EM253 module, axis number range decided by motion control modules number)	Byte	0~255	

ACT_P OS	OUT	Absolute coordinate of current axis(1 pulse indicate 1 unit coordinate)	Dint	-2147483648~ +2147483647	No error status output for this instruct, axis number must set correctly.
STAT US	OUT	Communication status sign bit 1: communication timeout	Bool	0~1	

Uniaxial relative motion instruction

① Function name: MC253_PTP_R

② Function: Used for uniaxial point - to - point control (uniaxial fixed - length drive). Call one time output fixed pulse, by setting the maximum, minimum speed and deceleration time, the output pulse will gradually accelerate to the largest speed, when the pulse number is ready to run, cut down pulse frequency automatically to prevent vibration or jammed due to too much inertia when start or stop the machine.

Name	I/O	Description	Туре	Value range	Note
E_STOP	IN	Emergency stop bit 1: Valid, 0: Invalid	Bool	0/1	1 Run only when Run =1 and E_Stop =0 2 RUN reset internal when E_STOP = 1
AXIS_NO	IN	Set axis number, 0/1/2/3	Byte	0~3	Unchangeable in the process
MIN_SPE ED	IN	Minimum speed of run or stop. Unit: HZ	Dword	500~200000	1 Set minimum speed less than maximum speed
MAX_SP EED	IN	Maximum speed of run Unit: HZ	Dword	500~200000	2 Changeable in the process
ТА	IN	Time of ACC/DEC, Unit: ms	Dword	0~10000	Changeable in the process; if TA=0, no settings for acceleration.
RUN	IN	Run enable bit	BOOL	0~1	1 Run only when

|--|

		1: valid			RUN =1 and E_STOP =0. 2 RUN reset internal when run complete. 3 When E_STOP=1, RUN reset internal.
STATUS	OUT	76543210Output status byte:Bit0:parameterconfiguration error sign1—parameterconfiguration error0—parameterconfiguration normalBit1:Run sign1—RunningO—Do not runBit2:Completion sign1—RunningO—Do not runBit2:Completion sign1—RunningO—Do not runBit2:Completion sign1—Instructionexecution completed0—Instructionexecution do notcompletedBit3:Bit3:Busy sign1—Valid,the axisoccupiedby otherinstructiono—Invalid,executinginstructionorexecutiondo notcompletedBit3:Busy signI—Valid, the axisoccupiedby otherinstructionorexecutionor	BYTE	0~255	Bit0: 1 Judge Only to axis parameter configuration error and homing mode out of range. 2 No error reported for other parameters, it will set to the nearest reasonable value automatically. 3 Report parameter failure if TA=0 and the maximum acceleration is not set; TD the same
SET_PO S	IN	Output pulse. The positive output pulse indicates the positive direction along the X-axis, and the negative pulse number indicates the negative direction along the X-axis.	DInt	-2147483647 ~ +2147483647	Modifiable during operation. When the new set value is greater than the number of pulses output, the final output pulse will be subject to the new set value. When the new set value is less than the number of output pulses, the pulse output will be stopped immediately
ACT_PO	OUT	Absolute coordinate of	DInt	-2147483647	This instruction no

S		current axis (1 pulse 1		~	error and set the axis
		units coordinate)		+2147483647	number correctly.
ACT_SPE ED		Current run speed	Dword		Note: this value may
	OUT				be a little off actual
				500~200000	one, at most 5K,
					related to
					acceleration time and
					setting speed

Speed control instruction

1 Function name: MC253_SPEED_CTL

② Function: Control the frequency of uniaxial output pulse, the output pulse frequency (speed) can be changed any time. When receive the soft stop command, it will automatically slow down to stop. When receive the emergency stop command, the pulse output will stop immediately without any deceleration.

Name	I/O	Description	Туре	Value	Note	
RUN	Z	Run enable bit 1: Valid	BOOL	0~1	1 Run only when RUN =1 and E_STOP =0. 2 RUN reset internal when run complete. 3 when E_STOP=1, RUN reset internal.	
E_STOP	IN	Emergency stop bit 1: Valid, 0: Invalid	BOOL	0~1	1 Run only when RUN =1 and E_STOP =0. 2 When E_STOP=1, RUN reset internal.	
SOFT_S TOP	IN	Soft stop bit1: valid 0: invalid Output pulse decelerate to stop when receive the instruction	Bool	0/1		
DIR	IN	Pulse direction bit	Bool	0/1	Unmodifiable in the process	
AXIS _NO	IN	Set axis number, 0/1/2/3	Byte	0~3	unmodifiable in the process	
MIN _SPEED	IN	Minimum speed of run or stop. Unit: HZ	Dword	0~200000	1 Minimum speed should less than setting speed	
SET IN		Setting speed, output pulse will accelerate or decelerate to this speed before stop command	Dword	0~200000	2 Modifiable in the process	
TA	IN	Time of ACC Unit: ms	Dword	0~10000	Modifiable in the process; Calculate acceleration only when startup and TA/TD changes	
TD	IN	Time of ACC, from setting time to minimum time Unit: ms	Dword	0~10000	Unmodifiable in the process	

STATUS	OUT	7 6 5 4 3 2 1 0 Output status byte: Bit0: parameter configuration error sign 1—Parameter configuration error 0—Parameter configuration normal Bit1: Run sign 1—Running 0—Do not run Bit2: Completion sign 1—Instruction execution completed 0—Instruction execution do not completed Bit3: Busy sign 1—Valid, the axis occupied by other instruction 0—Invalid, executing instruction or execution done.	BYTE	0~255	Bit0: 1 Judge Only to axis parameter 2 No error reported for other parameters, it will set to the nearest reasonable value automatically. 3 Report parameter failure if TA=0 and the maximum acceleration is not set; TD the same
ACT _SPEED	OUT	Current actual speed	DWORD	0~200000	Current actual speed

Software back to zero instruction

① Function name: MC253_SET_POS_ZERO

② Function: Reset absolute coordinate

Note

Call the instruction when the machine moves to a certain position, which is equivalent to setting the origin of the axis at that position. Each time you call the "read absolute coordinates" command, you get a coordinate value relative to that point.

③ Paramet	er				
Name	I/O	Description	Туре	Value range	Note
		Enable reset bit			
SET	IN	Set absolute coordinate 0 at	Bool	0~1	
	IIN	SET rising edge, set SET 0,	Dool	0.41	
		then set 1 for each call			
		Set axis number(2 axes for			
		each EM253 module, axis		0~255	
AXIS_NO	IN	number range decided by	Byte		
		motion control modules			
		number)			
OTATUO		Communication status sign bit	Deel	0.1	
STATUS	001	1: Communication timeout	DOOL	0~1	

External reset coordinate enable instruction II

① Function name: MC253_EXT_RESET_EN_EXT

② Function: set if enable external IO reset absolute coordinate

Note

Corresponding relation between axis number and external reset signal:

Axis 0 ——I0.2 (MC253_HSC0)

Axis 1 ----- I0.6 (MC253_HSC1)

Name	I/O	Description	Туре	Value range	Note
		Enable reset bit		0~1	
OFT	IN	Set absolute coordinate 0 at	Bool		
SEI		SET rising edge, set SET bit 0,	DOOI		
		then set 1 for each call			
RESET	IN	RESET rising edge, forbid to	Peel	0.1	
		enable external reset, RESET	BOOI	0~1	

		then set 0 for each call			
		Set axis number(2 axes for			
		each EM253 module, axis			
AXIS_NO	IN	number range decided by	Byte	0~255	
		motion control modules			
		number)			
		Status bit:			
		7 6 5 4 3 2 1 0		0~255	
		Bit0: Reset status sign bit			
		1—Reset complete			
STATUS	OUT	0—Reset uncompleted	Buto		
31A103	001	Bit1~Bit6: reserved	Вуте		
		Bit7: Communication status			
		sign bit			
		1—Communication timeout			
		0—No timeout			

④ Explanation

Use 0 axis to call this instruction. After the SET rising edge enables the external reset function and I0.2 detect the "effective reset signal", the system resets the axis 0 absolute coordinate, and also the STATUS setting reset complete. After the RESET rising edge prohibits the external reset function, even if I0.2 detect the "effective reset signal", the system will not reset the 0 axis absolute coordinate, and the STATUS reset instruct is non-reset state.

Note

The so-called "effective reset signal", the reset signal of each axis corresponding to an external IO, and the corresponding register set its effective level. For example, 0 axis corresponds to I0.2, and HSCO control register SM37.0 set the effective reset level of 0 axis. When set to 0, the effective reset signal of 0 axis is in I0.2 high level. When set to 1, the effective reset signal of axis 0 is in I0.2 low level; This setting is only effective if and only if the corresponding high-speed counter (0 axis corresponds to HSCO) is enabled, otherwise (no high-speed counter is enabled) the system default high level is the effective reset signal. If 0 axis, I0.2 high level is the effective reset signal. In the same way for other axes, the corresponding relation of the relevant control of each axis is shown in ② of this section.

Set maximum acceleration instruction

Function name: MC253_SET_MAX_ACCELE

② Function: set maximum acceleration (= MAX_SPEED/TA) (TA≠0) (if the instruction isn't called, indicate the maximum acceleration has not been set)

Name	I/O	Description	Туре	Value range	Note
MAX_SPE ED	IN	Maximum speed of long-axis run Unit: HZ	Dword	0~200000	Modifiable in the process
ТА	IN	Time of ACC Unit: ms	Dword	0~10000	Modifiable in the process Calculate acceleration only when startup and TA/TD changes
AXIS_NO	IN	Set axis number(2 axes for each EM253 module, axis number range decided by motion control modules number)	Byte	0~255	
SET	IN	After ensuring parameter above, give SET a rising edge to make it effective.	Bool	0~1	
STATUS	OUT	Communication status sign bit 1: Communication timeout	Bool	0~1	

③ Parameter

④ Explanation

If set the X-axis parameter TA=0, or the X-axis does not call this instruction, it is considered that the X-axis does not set maximum acceleration; Otherwise, MAX_ACCELE=MAX_SPEED/TA is considered to be set as the X-axis maximum acceleration. The significance of this instruction is:

a. Set an appropriate acceleration to limit the acceleration of each instruction on an axis.

Such as PTP instruction, set AXIS_NO=0, MIN_SPEED=1000, MAX_SPEED=11000, TA=500, then in theory the acceleration of PTP motion is 20HZ/ms (= (MAX_SPEED-MIN_SPEED)/TA); if 0 axis call MC_SET_MAX_ACCELE and set maximum acceleration 15HZ/ms, the PTP actual acceleration is 15HZ/ms (the same for MC_LINE_R and MC_CIRCLE_R)

b. An instruction on a certain axis is to obtain the maximum acceleration to run

If the PTP instruction run at the maximum acceleration, call MC_SET_MAX_ACCELE instruction on the coaxes to set the maximum acceleration (the parameter TA of MC_SET_MAX_ACCELE instruction cannot be 0, otherwise cannot obtain the maximum acceleration), and simultaneously set the parameter TA of PTP instruction to 0.

If the maximum acceleration is not set and the PTP instruction TA=0, the alarm parameter fails on the PTP instruction. (Same for MC_LINE_R and MC_CIRCLE_R)

Note

1. For the biaxial instructions MC_LINE_R and MC_CIRCLE_R, if both set the maximum acceleration, the smaller one will be taken as the maximum acceleration of the biaxial system. If only one axis is set with the maximum acceleration, then take it as the maximum acceleration of the biaxial system. If the maximum acceleration is not set on both axes, the biaxial system has no limitation for acceleration.

2. After MAX_SPEED, TA, AXIS_NO have been determined, give SET a rising edge, so these parameters are updated and effective.

PWM instruction

1 Function name: MC253_PWM

② Function: Output different period pulse and duty ratios by setting cycle and duty ratio parameters.

3 Parameter

Name	I/O	Description	Туре	Value range	Note
AXIS_	IN	Set axis number(2 axes for each EM253 module, axis number	Bvte	0~255	Unmodifiable in the process
NO		range decided by motion control			

					•
		modules number)			
CFG	IN	Reference time unit 0: 1us, 1: 0.5ms	Byte	0~1	Unmodifiable in the process
CYCLE	IN	Pulse period	Word	2~65535	Unmodifiable in the process
DUTY	IN	Pulse duty factor	Word	0~65535	Unmodifiable in the process
RUN	IN	Enable run	Bool	0~1	
STATUS	OUT	Output status byte:76543210Bit0:Parameterconfigurationerror sign1—Parameterconfigurationerror0ParameterconfigurationnormalBit1:Run sign1—Running0Do not runBit2:Completion sign1—Instructionexecutioncompleted00—Instruction execution do notcompletedBit3:Busy sign1—Valid, the axis occupied byother instruction0—Invalid, executing instructionor execution done.Bit4:Modules Estop sign1—Sign is valid, the axis isforbidden run by externalcondition.0—Sign is invalidBit5-Bit6: reservedBit7:Instruction communicationstatus sign1—Communication timeout0—No timeout	Byte	0~255	Bit0: Judge only to axis parameter configuration error CYCLE/D UTY is set to the nearest reasonable value without error reported. 253 PLC module is not identified or not connect to the module will prompt parameters configuration errors

Set target position instruction

① Function name: MC253_SET_POS_PV

- ② Function: This instruction is used to write the absolute location of the machine to the module. For example, if the power cut off when machine runs to a certain position, save this position. When next time power up, it can be written back to the module, so that the starting point of counting the module absolute position is consistent with the machine actual starting point, no need to return to the origin. If this position happens to be the origin, this instruction has the same effect as MC253_SET_POS_ZERO.
- Name I/O Description Туре Value range Note Set axis number(2 axes for each EM253 module, axis AXIS_NO IN number range decided by Byte 0~255 motion control modules number) After ensuring parameter SET IN above, give SET a rising Bool 0~1 edge to make it effective. Set target position, in positive and negative. -2147483648 Output positive pulse POS_PV IN Dint ~ indicates along X-axis +2147483647 forward direction, negative pulses indicate reverse. Communication status sign OUT STATUS Bool 0~1 1-communication timeout

③ Parameter

Set module HSC instruction

① Function name: MC253_HSC_INIT

2 Function: Configure HSC

Note

Execute one time on first scan cycle of CPU power on

Name	I/O	Description	Туре	Value range	Note
NUM	IN	HSC sign(2 axes for each EM253 module, axis number range decided by motion control modules number)	Byte	0~255	
MODE	IN	Count mode	Byte	0~12	Not support all, refer to attached table below
CONTR OL	IN	Control Word: 7 6 5 4 3 2 1 0 Bit0: Reset effective level control bit 1—Low level 0—High level Bit1: Reserved Bit2: Orthogonal counter speed selection 1—1x velocity 0—4x velocity Bit3: Position control bit 1—Count addition 0—Count decrease Bit4: Update direction 1—Update direction 0—No update Bit5: update default	Byte	0~255	

		1—Write new default			
		0—No update			
		Bit6: Update current value			
		1—Write new current value			
		0—No update			
		Bit7: effective bit			
		1—Effective			
		0—Ineffective			
	INI	Interrupt	Buto	recorved	reconved
	IIN	configuration(reserved)	Dyte	reserved	
	IN	New current value Dwo		-2147483	
				648	
CV			Dword	~	
				+2147483	
				647	
				-2147483	
				648	
PV	IN	New default value	Dword	~	
				+2147483	
				647	
STATUS		Communication status sign	Bool	0.1	
STATUS	001	1—Communication timeout	800I	0~1	

Attached Table

Mode	Description	Input			
	MC253_HSC0	10.0	10.1	10.2	
	MC253_HSC1	10.4	10.5	10.6	
0	Single phase counter with internal	Clock			
1	direction control	Clock		Reset	
3	Single phase counter with external	Clock	Direction		
4	direction control	Clock	Direction	Reset	
9	A/P phase orthogonal counter	Clock A	Clock B		
10	Arb phase orthogonal counter	Clock A	Clock B	Reset	

Read modules HSC status instruction

1 Function name: MC253_READ_HSC

② Function: Read HSC count status and current value

③ Parame	eter			
Name	I/O	Description	Туре	Value range
NUM	IN	HSC sign(2 axes for each EM253 module, axis number range decided by motion control modules number)	Byte	0~255
STATUS	OUT	Status Word: 7 6 5 4 3 2 1 0 Bit0: Communication status bit 1 Communication status bit 1	Byte	0~255
CV	OUT	New current value	Dword	-2147483648 ~ +2147483647

Control modules output instruction

1 Function name: MC253_DO_CTRL

2 Function: Control output of motion control module

Name	I/O	Description	Туре	Value range	Note
ID	IN	Motion control module ID number	Byte	0~255	Apply only to motion control module
DO	IN	Module output port value	Byte	0~255	DO corresponds to 8 Q output, low byte corresponds to Q low bit, such as DO bit0 corresponds to Q0.0
STATUS	OUT	Communication status sign 1—communication timeout	Bool	0~1	

Note

- The number of motion control module is only internally unified. If the PLC has 3 modules, among which module 0 and 2 is the motion control module, module 1 is not, then module 0 is ID0, module 1 is uncontrollable for it is not motion control module, and module 2 is ID1.
- If a single motion control module is attached behind the CPU, the delay from enable to execution of the output instruction is about 780us due to transmission delay. If there are up to 5 motion control modules hanging behind the CPU, the delay is about 930us.

Read modules input status instruction

1) Function name: MC253_READ_DI

2 Function: Read input of motion control module

③ Parameter

Name	I/O	Description	Туре	Value range	Note
ID	IN	Motion control	Byte	0~255	Apply only to motion
		module ID number			control module
DI	OUT	Module output port value	Byte	0~255	DI corresponds to 8 I input, low byte corresponds to I low bit, such as DI bit0 corresponds to I0.0
STATUS	OUT	Communication status sign 1—communication timeout	Bool	0~1	

Note

- The number of motion control module is only internally unified. If the PLC has 3 modules, among which module 0 and 2 is the motion control module, module 1 is not, then module 0 is ID0, module 1 is uncontrollable for it is not motion control module, and module 2 is ID1.
- When an axis call motion control instruction, if confirm to operating conditions, the running process of the axis port output pulse or direction according to the instruction (corresponding port is not controlled by the MC253_DO_CTRL), the port can restore normal IO functions after run (accept instruction MC253_DO_CTRL control); use instruction MC253_DO_CTRL carefully so as not to affect the use of motion control.

Initialize motion control module instruction

① Function name: MC253_INIT

- 2 Function: Initialize the system control variable of motion control module
- ③ Parameter: NONE

Uniaxial relative motion instruction

① Function name: MC253_PTP_R

- ② Function: Used for uniaxial point to point control (uniaxial fixed length drive). Call one time output fixed pulse, by setting the maximum, minimum speed and deceleration time, the output pulse will gradually accelerate to the largest speed, when the pulse number is ready to run, cut down pulse frequency automatically to prevent vibration or jammed due to too much inertia when start or stop the machine.
- ③ Parameter

Name	I/O	Description	Туре	Value range	Note
E_STOP	IN	Emergency stop bit 1: Valid, 0: Invalid	Bool	0/1	1 Run only when Run =1 and E_Stop =0 2 RUN reset internal when E_STOP = 1
AXIS_NO	IN	Set axis number, 0/1/2/3	Byte	0~3	Unchangeable in the process
MIN_SPE ED	IN	Minimum speed of run or stop. Unit: HZ	Dword	500~200000	1 Set minimum speed less than maximum speed
MAX_SP EED	IN	Maximum speed of run Unit: HZ	Dword	500~200000	2 Changeable in the process
TA	IN	Time of ACC/DEC,	Dword	0~10000	Changeable in the

		Unit: ms			process; if TA=0,
					no settings for
					acceleration.
RUN	IN	Run enable bit 1: Valid	BOOL	0~1	1 Run only when RUN =1 and E_STOP =0. 2 RUN reset internal when run complete. 3 when E_STOP=1, RUN reset internal.
STATUS	OUT	76543210Output status byte:Bit0:Parameterconfiguration error sign1—Parameterconfiguration error0—Parameterconfiguration normalBit1: Run sign1—Running0—Do not runBit2: Completion sign1—Instructionexecution completed0—Instructionexecution do notcompletedBit3: Busy sign1—Valid, the axisoccupied by otherinstructiono—Invalid, executinginstruction orexecution done.	BYTE	0~255	Bit0: 1 Judge Only to axis parameter configuration error and homing mode out of range. 2 No error reported for other parameters, it will set to the nearest reasonable value automatically. 3 Report parameter failure if TA=0 and the maximum acceleration is not set; TD the same
SET_PO S	IN	Output pulse. The positive output pulse indicates the positive direction along the X-axis, and the negative pulse number indicates the negative direction along the X-axis.	DInt	-2147483647 ~ +2147483647	Modifiable during operation. When the new set value is greater than the number of pulses output, the final output pulse will be subject to the new set value.

Appendix

					When new value is	
					less than output	
					pulses number,	
					the pulse output	
					will be stopped	
					immediately	
		Absolute coordinate of		21/7/026/7	This instruction no	
ACT_PO		current axis (1 pulse 1 DInt	Dist	-2147403047	error and set the	
S	OUT		units coordinate)	Units coordinate)	Din	-
		units coordinate)		+2147403047	correctly.	
					Note: this value	
		Current run speed			may be a little off	
ACT_SPE ED	OUT		Dword	500 200000	actual one, at	
			Dwora	500~200000	most 5K, related to	
					acceleration time	
					and setting speed	

Homing instruction

1 Function name: MC253_HOMING

② Function: Find device origin by setting parameters such as homing mode. The relationship between the axis number and external reset IO signal (such as homing Z pulse):

Axis $0 \rightarrow 10.2$ (MC253_HSC0)

Axis 1 \rightarrow I0.6 (MC253_HSC1)

If the homing mode refers to the origin switch (mode 3 or 4), connect origin switch signal (the HOMING_SW parameter of the instruction) to the corresponding point above; otherwise, the origin cannot be found.

Name	I/O	Description	Туре	Value range	Note
E_STOP	IN	Emergency stop bit 1: Valid, 0: Invalid	BOOL	0~1	1 Run only when RUN =1 and E_STOP =0. 2 When E_STOP=1, RUN reset internal.
LIMIT_SW_CC W	IN	CCW limit switch	BOOL	0~1	
LIMIT_SW-CW	IN	CW limit switch	BOOL	0~1	
HOMING_SW	IN	Origin switch	BOOL	0~1	
AXIS_NO	IN	Axis number	BYTE	0~255	Unchangeable in the process
SIGNAL_TYPE	IN	76543210Signal type:Bit0:Counterclockwisestrokelimitinputsignal type0High level1Low levelBit1:Clockwisestrokelimitinputsignal type0High level1Low levelEinitinputsignal type0High level1Low levelBit2:OriginBit2:Originswitchsignal type0High level1Low level11Low level	BYTE	0~255	
HOMING_MOD E	IN	Homing mode	BYTE	1~14	Refer to Appendix E.4 Back to Zero Mode Illustration
MIN_SPEED	IN	Minimum speed Unit: Hz	DWORD	0~200000	1 Pulse output close when speed
SEARCH_SPE ED	IN	Origin search speed Unit: Hz	DWOR D	0~200000	< 5Hz. 2 Unchangeable in the process
APPROACH_S PEED	IN	Origin close speed Unit: Hz	DWOR D	0~200000	3 Search speed should not be too large, close speed should be as small as possible

Appendix

ТА	IN	Time of ACC/DEC. Unit: ms	DWORD	0~10000	Changeable in the process
RUN	IN	Enable run bit 1: Valid	BOOL	0~1	1 Run only when RUN =1 and E_STOP =0. 2 When E_STOP=1, RUN reset internal.

④ Explanation

The program detect each input by scanning (the Z phase is not affected by this), so when the switch value changes and process not in time, there may be some delay. If the homing speed (including search and close speed) is too high, the processing delay will be amplified, resulting in inaccurate return.

Note: 1 When $TA \neq 0$, acceleration= (MAX_SPEED-MIN_SPEED) /TA(limited by maximum acceleration if it is set before); When TA=0, use MC253_SET_MAX_ACCELE to set maximum acceleration, parameter will report error if not set. Same for TD, for two-axis instruction, if both axes have set maximum acceleration, then adopt smaller one as system acceleration.

2 In theory, acceleration = **[** (MAX_SPEED - MIN_SPEED) / TA **]**. If the desired acceleration is too small (less than 1), the instruction default internal acceleration is 1. Users can reasonably set TA/TD according to the expected acceleration.

3 Import "Module emergency stop signal" in module input port: when the module detects this signal, forbid to output pulse, and alarm at the status of pulse output instructions (such as MC253_PTP_R, MC253_SPEED_CTL and MC253_PWM instructions). The corresponding relation between axis number and emergency stop signal:

Axis $0 \rightarrow 10.3$ Axis $1 \rightarrow 10.7$

J.5 Debugging Example

Hybrid motion control instruction

Making stepping motor whose subdivision is 1000 and screw lead is 5mm to do to-and-fro movement, a distance of 2000mm.

[System Explanation]

Attach one SM253 module and set it as point-point movement parameter of axis 0 after CPU in this example. Call MC253_PTP_R to set controlling parameter.

10.2 is hardware zero reset of A point which will be set as mechanical origin under limit switch input.

I1.0 is emergency stop input of system;

Q0.0 is pulse output, Q0.1 is direction output

[Program Block]

Program comment:
Use CPU H226XL to control stepping motor whose subdivision is 1000 and screw lead is
5mm to do to-and-fro movement, a distance of 2000mm.
Attach one SM253 module and set it as point-point movement parameter of axis 0 after
CPU in this example. Call MC253_PTP_R to set controlling parameter.
IO.2 is hardware zero reset of A point which will be set as mechanical origin under
limit switch input.
I1.0 is emergency stop input of system;
Q0.0 is pulse output, Q0.1 is direction output
Program idea:
First, call speed control instruction to make machine back to zero before startup;
Second, call single axis relative motion instruction for point-point movement after
zero;
Third, realize to-and-fro movement between A and B by changing the value of SET_POS
in MC_PTR_R instruction

Network 1

Network 2

Network 4

Network 7

Network 8

Network 10

Single axis relative motion control inst Function: motion control between point A I1.0emergency stop bit Axis number is 0 VD40starting/stop speed VD44normal operation speed after a VD48acceleration/deceleration times VD52output pulse MO.2run enable bit VB56Output status byte VD58output pulse number VD62current actual operation speed	ruction and point B acceleration
	MC253_PTP_R:FC9
	ER
I1.0	
┝──┥ ┝────	E_STOP
l 0-	AXIS_NO STATUS_VB56
VD40-	MIN_SPEED ACT_POS_VD58
VD44-	MAX_SPEED ACT_SPEED_VD62
VD48-	TA
VD52-	SET_POS
MO. 2-	RUN

K Instructions of ETHERNET_SET

K.1 Instruction

Instructions ETHERNET_SET (V1.2) is used to set the remote communication parameters of MagicWorks PLC system block, you can set and get the IP address, MAC address and device name of the EtherNET PLC without stopping CPU, as well as remote program and monitor PLC via MICO.

K.2 Instruction Explanation

It's available for free download the ETHERNET_set library file from COTRUST official website: www.co-trust.com.

The library file includes the following parameters:

Get IP address library

1 Library name: GIP_ADDR

(2) Function: Get IP address.

Parameters	Name	IN/OUT	Data Type	Explanation
GIP_ADDR: FCO EN STATUS - IP_ADDR - MASK - GATE -	EN	IN	BOOL	Enable, SM0.0 is allowed to invoke.
	STATUS	OUT	BYTE	Status word bit0=1, means successfully acquired the address. bit1=1 means failed to get the address.
	IP_ADDR	OUT	DWORD	IP address, four bytes in total, each byte shows the IP address from low to high.
	MASK	OUT	DWORD	Subnet mask, four bytes in total, each byte shows the subnet mask number from low to high.
	GATE	OUT	DWORD	Gateway, four bytes in total, each byte shows the gateway number from low to high.

Set IP address library

- 1 Library name: SIP_ADDR
- ② Function: Set IP address.

Parameters	Name	IN/OUT	Data Type	Explanation
SIP_ADDR:FC1 EN IP_ADDR STATUS-	EN	IN	BOOL	Enable, edge triggered. The instruction is not allowed to circularly invoke, cause set IP and EPPROM has limits for number of times, and the EtherNET communication would be failed due to frequently write.
	IP_ADDR	IN	DWORD	IP address, four bytes in total, each byte shows the IP address from low to high.
	MASK	IN	DWORD	Subnet mask, four bytes in total, each byte shows the subnet mask number from low to high.
GATE	GATE	IN	DWORD	Gateway, four bytes in total, each byte shows the gateway number from low to high.
	STATUS	OUT	BYTE	Status word bit0=1, means set successful. bit1=1, means illegal IP address. bit2=1, means IP and mask is not match. Bit3=1, means IP and gateway is not match.

Get MAC address library

① Library name: GET_MAC

(2) Function: Get MAC address

Parameters	Name	IN/OUT	Data Type	Explanation
GET_MAC: FC2	EN	IN	BOOL	Enable, SM0.0 is allowed to invoke.
STATUS - MAC5 -	STATUS	OUT	BYTE	Status word bit0=1, means successfully acquired the address.
MAC3 MAC2 MAC1 MAC0	MAC0~ MAC5	OUT	BYTE	MAC Address xx:xx:xx:xx:xx MAC5MAC0

Set device name library

- 1 Library name: SET_DEV_NAME
- ② Function: Set device name.

Parameters	Name	IN/OUT	Data Type	Explanation
SET_DEV_NAME:FC3 - EN NAME STATUS	EN	IN	BOOL	Enable, edge triggered. The instruction is not allowed to circularly invoke, cause set IP and EPPROM has limits for number of times, and the EtherNET communication would be failed due to frequently write.
	NAME	IN	DWORD	Pointer of device name. The first byte express the length, the whole string contains 32 length bytes at most.

STATI	JS OUT	BYTE	Status word Bit0=1, means set successful. Bit1=1, means length error. Bit2=1, means save failed. Bit3 means illegal character.	
-------	--------	------	--	--

Cautions:

It's available for you to set IP via TD4S except the library. If you use TD4S to set IP, please use static IP in the TCP/IP port of system block, which is not allowed to select automatic acquisition IP address mode, otherwise the setting would not be effect.

If you select library, there is no need to set following system block.

💿 System Block	x
System Block Communication Ports Retentive Ranges Password Output Tables Input Filters Pulse Catch Bits Background Time EM Configurations O utomatic Assigned IP E dit in Run IP: 192.168.1 Automatic Assigned DNS Gateway: 192.168.1 In puts: . Automatic Assigned DNS Claim Password	rks PLC will use to communicate to the Defaults ote Control ame: CTS7-21X ain: mico.co-trust.com v ort: 8888 ain: mico.co-trust.com v ame: CO_TRUST ord: •••••••
Configuration must be downloaded before taking effect. OK Can	cel Default All Help

K.3 Example

The sample application of ETHERNET_SET instruction shows as follows:

L Instruction Set

Bit logic instruction			
	Normally open contact load		AND load instruction
LD	instruction	ALD	ALD
	LD SM0.0		
	Normally open contact AND		OR load instruction
А	instruction	OLD	OLD
	A SM0.0		
	Normally open contact OR		Logic into stack instruction
0	instruction	LPS	LPS
	O SM0.0		
	Normally close contact load		Load stack instruction
LDN	instruction	LDS	LDS 1
	LDN SM0.0		
	Normally close contact AND		Logic read instruction
AN	instruction	LRD	LRD
	AN SM0.0		
	Normally close contact OR		Logic out stack instruction
ON	instruction	LPP	LPP
	ON SM0.0		
	Normally open contact		Output instruction
LDI	immediately load instruction	=	= Q0.0
	LDI 10.0		
	Normally open contact AND		Immediately output instruction
AI	immediately instruction	=I	=I Q0.0
	AI 10.0		
	Normally open contact OR		Set instruction
OI	immediately instruction	S	S Q0.0 1
	OI 10.0		
	Normally close contact		Immediately set instruction
LDNI	immediately load instruction	SI	SI Q0.0 1
	LDNI 10.0		
ANI	Normally close contact AND		Reset instruction
	immediately instruction	R	R Q0.0 1
	ANI 10.0		
ONI	Normally close contact OR		Immediately reset instruction
	immediately instruction	RI	RI Q0.0 1
	ONI 10.0		
NOT	Logic stack top revere		Power flow AND instruction
	instruction	AENO	AENO
	NOT		

Table L-1 CTH200 instruction set

	Rising edge detection		Null operation instruction
EU	instruction	NOP	NOP 1
	EU		
	Falling edge detection		
ED	instruction		
	ED		
Comparison in	struction		
	Byte comparison		Dute energy deservations (
	(=,<,>,<=,>=,<>) load	ODv	Byte operand comparison (=,
LDBX	instruction	OBX	
	LDB= 1, VB0		OB=1, VBO
	Integer comparison		Integer comparison
	(=,<,>,<=,>=,<>) load		(=,<,>,<=, >=,<>) OR
LDVVX	instruction	Ovvx	instruction
	LDW= 10000, VW0		OW= 10000, VW0
	Long integer comparison		Double integer comparison
	(=,<,>,<=,>=,<>) load		(=,<,>,<=,>=,<>) OR
LDDX	instruction	ODx	instruction
	LDD= 100000, VD0		OD= 100000, VD0
	Floating number		Electing number comparison
	comparison		
LDRx	(=,<,>,<=,>=,<>) load	ORx	(=, <, >, <=, >=, <>) OR
	instruction		
	LDR= 1.0, VD0		OR= 1.0, VD0
	Byte operand comparison	LDSx	String comparison (- <>) load
٨Bv	(=,<,>,<=,>=,<>) AND		instruction
Abx	instruction		LDS-"1234567890" \/B0
	AB= 1, VB0		
	Integer comparison (=,<,>,	ASx	String comparison (=,<>) AND
AWx	<=,>=,<>) AND instruction		instruction
	AW= 10000, VW0		AS="1234567890", VB0
	Double integer comparison	OSx	String comparison $(- <)$ OR
ADx	(=,<,>, <=,>=,<>) AND		instruction
ABX .	instruction		OS="1234567890" \/B0
	AD= 100000, VD0		
	Floating number		
ARx	comparison (=,<,>,		
	<=,>=,<>) AND instruction		
	AR= 1.0, VD0		
Transmit instru	iction		
MOVB	Byte move instruction		High and low byte exchange
	MOVB 1 VB0	SWAP	instruction
-			SWAP VW0
	Word move instruction		Move byte immediately read
MOVW	MOVW 1000,VD0	BIR	instruction
			BIR IB0, VB0

MOVD	Double Word move	BIW	Move byte immediately write	
	instruction		instruction	
	MOVD 100000,VD0		BIW VB0, QB0	
	Floating number move			
MOVR	instruction	SRCP	Recipe to storage card	
in o vite	MOVR 1.0.VD0			
	Block move byte instruction			
BMB	BMB VB0 VB100_1	LRCP	Load recipe from storage card	
	Block move Word			
BMW	instruction	SDI	Record data to storage card	
Binty		ODE	Robola dala lo otorago dala	
	Block move double Word			
BMD	instruction			
Integer calcula	to instruction			
integer calcula				
		N 41 11		
+1	+1 10000, VVV0	MUL		
	Literation of the day			
	Integer subtraction		Integer divide with double	
-1		DIV	Integer	
	-I 10000, VW0			
*	Integer multiply instruction	INCB	Byte increasing instruction	
	*I 10000, VW0		INCB VB0	
/I	Integer division instruction	DECB	Byte decreasing instruction	
	/I 10000, VW0		DECB VB0	
	Double Integer addition		Integer increasing instruction	
+D	instruction	INCW	INCW VW0	
	+D 100000, VD0			
	Double Integer subtraction		Integer decreasing instruction	
-D	instruction	DECW	DECW VW0	
	-D 100000, VD0			
	Double Integer multiply		Long Integer increasing	
*D	instruction	INCD	instruction	
	*D 100000, VD0		INCD VD0	
	Double Integer division	DECD	Long Integer decreasing	
/D	instruction		instruction	
	/D 100000, VD0		DECD VD0	
Float-point calculate instruction				
+R	Real addition instruction	COS	Cosine calculate instruction	
	+R 1.0, VD0	000	COS 1.0, VD0	
-R	Real addition instruction		Tangent calculate instruction	
	-R 1.0, VD0	IAN	TAN 1.0, VD0	
*R	Real multiplication		Nature exponential calculate	
	instruction	LN	instruction	
	*R 1.0, VD0		LN 1.0, VD0	
/R	Real division instruction	EXP	Nature exponential calculate	

	/R 1.0, VD0		instruction
			EXP 1.0, VD0
			PID circuit calculate
SQRT	Square root instruction	PID	instruction
			PID VB0, 1
	Sine calculate instruction		
SIN			
Convert instru	ction		
	Convert from byte to		Convert from Double Integer
BTI	Integer	DTR	to real number
BII		BIR	
	Convert from Integer to		Convert from Double Integer
ІТР	bute	DTO	to string
ПВ		015	
			DTS 100000, VB0, 10
	Convert from Integer to		Carry integer instruction
ITD	double Integer	ROUND	ROUND 1.0, VD0
	ITD 10000, VD0		,
ITS	Convert Integer to string	TRUNC	Cut bit integer instruction
	ITS 10000, VB0, 10		TRUNC 1.0, VD0
	Convert from double		Convert from real to string
DTI	Integer to Integer	RTS	RTS 1.0, VB0, 10
	DTI 100000, VW0		
	Convert from BCD to		Convert from string to Integer
BCDI	Integer	STI	STI"1234567890", 5, VW0
	BCDI VW0		
	Convert from Integer to		Convert from string to double
IBCD	BCD	STD	Integer
	IBCD VW0		STD"1234567890", 5, VD0
	Convert from Integer to		Convert string to real
ITA	ASCII	STR	STB"1234567890" 5 VD0
	ITA 10000 VB0 10		
	Convert from double		Decode instruction
		DLCO	
			Coding instruction
RTA	Convert from real to ASTI	ENCO	
	Instruction		ENCO 10000, VB0
	Convert from ASCII to 16		Segment instruction
ATH	system	SEG	SEG 1, VB0
	ATH VB0, VB100, 10		
	Convert from 16 system to		
HTA	ASCII		
	HTA VB0, VB100, 10		
Real-time cloc	k		
	Read real-time clock		Read extend real-time clock
TODR	TODR VB0	IUDKA	TODRX VB0
TODW	Set real-time clock	TODWX	Set extend real-time clock

	TODW VB0		TODWX VB0	
Shift cycle instruction				
SLB	Left shift byte	RLW	Left rotation Word	
	SLB VB0, 4		RLW VW0, 8	
CLW/	Left shift Word	RLD	Left rotation double Word	
3200	SLW VW0, 8		RLD VD0, 16	
SID	Left shift double Word	RRB	Right rotation byte	
	SLD VD0, 16	NND	RRB VB0, 4	
CDD	Right shift byte		Right rotation Word	
	SRB VB0, 4		RRW VW0, 8	
SRW	Right shift Word	RRD	Right rotation double Word RRD VD0, 16	
900	Right shift double Word		Shifting register bit instruction	
SKD	SRD VD0, 16	SHKD	SHRB 10.0, V0.0, 8	
RIB	Left rotation byte			
	RLB VB0, 4		-	
Logic calculate	e instruction			
INVB	Reverse byte instruction	ORB	OR byte instruction	
	INVB VB0	0 NB	ORB 1, VB0	
INVW	Reverse Word instruction	ORW	OR Word instruction	
	INVW VW0		ORW 10000, VW0	
	Reverse double Word	ORD	OR double Word instruction	
INVD	instruction		OD 100000, VD0	
ANDB	AND byte instruction	XORB	XOR byte instruction	
	ANDB 1, VBU	XORW	XORB 1, VBU	
ANDW				
	AND double Word		XOR double Word instruction	
	instruction	XORD		
		AORD		
Counter instruction				
	Count-up instruction		HSC definition	
CTU	CTU C1, 10000	HDEF	HDEF 0, 0	
	Count-down instruction			
CTD	CTD C1, 10000	HSC	HSC instruction	
CTUD	Count down and up	PLS		
	instruction		Pulse output instruction	
	CTUD C1, 10000			
Timer instruction				
	Open delay timer		Read start timer	
ION	TON T37, 10000		BITIM VD0	
TONP	Reserved open delay timer		Read current microsecond	
TONK	TONR T31, 10000		value instruction	
TOF	Turn off delay timer	CITIM	Calculate interval timer	

	TOF T37, 10000		CITIM VD0, VD100	
String instruction				
SLEN	Get string length instruction SLEN"1234567890", VB0	SCAT	Concatenation string instruction SCAT"1234567890", VB0	
SCPY	Copy string instruction SCPY"1234567890", VB0	SFND	Seek string in string instruction SFND"12345678890", "321", VB0	
SSCPY	Copy substring from string instruction SSCPY"1234567890", 1, 10, VB0	CFND	Seek a character in string instruction CFND"12345678890", "a", VB0	
Table instruction	on			
FILL	Memory fill instruction FILL 10000, VW0, 10	FIFO	First in-first out instruction FIFO VW200, VW400	
ATT	Add to table instruction ATT 10000, VW0	LIFO	Last in-first out instruction LIFO VW200, VW400	
FNDx	Seek table (=, <, >, <=, >=, <>) instruction FND=VW0,9999,VW1000			
Interrupt instru	iction			
CRETI	Return from interrupt routine instruction	ATCH	Add interrupt instruction	
ENI	Start interrupt instruction	DTCH	Separate interrupt instruction	
DISI	Forbid interrupt instruction DISI	CEVNT	Clear interrupt event instruction CEVNT 10	
Program contr	ol instruction			
FOR	FOR-NEXT start loop FOR-NEXT FOR VW0, 1, 10 NEXT	LSCR	Load sequence control interrupt	
NEXT	FOR-NEXT loop end	SCRE	Sequence control relay end	
JMP	Jump to label instruction	SCRT	Sequence control relay transfer	
LBL	Label instruction	CSCRE	Conditional Sequence control relay end	
WDR	Monitor reset instruction	CRET	Return from subroutine with condition instruction	
DLED	Diagnosis LED instruction DLED 1	END	Conditionally end	
CALL	Call subroutine instruction	STOP	Stop instruction	
Communication instruction				
XMT	FPORT send instruction	SPA	Set port instruction	
----------	---------------------------	-----------	-------------------------------	--
RCV	FPORT receive instruction	GPA	Get port address instruction	
NETD	Network read instruction		Read module information	
NETK		EBUSK	instruction	
	Network write instruction		Write module information	
		EBUSW	instruction	
	Ethernet read function	EBUSGETDI	Get module internal diagnosis	
ODINEIR		А	information instruction	
	Ethernet write function	EBUSSNDC	Send module operation	
UDFINETW		MD	command instruction	
MBSNDMSG	Send Modbus message			

M Programming Cable

CTH200 PLC programming cable with USB-485 port is used for CPU programing, upload, download and monitor, USB end connect to PC/PG, 485 end connect to CPU PPI port.

	Item	Contents
	Order No.	CTS7 191-USB30
	Supported OS	Windows2000/XP/7/10
	Roud rate	300bps ~ 1Mbps standard
	Dauu Tale	baud rate self-adaption
	Work temperature	0 ~ +55 ℃
	Cable length	2.5 m
	Cable length each PC	1
	supported	1

Table M-1 Physical features of programming cable

Note

Please install drive before using programming cable, drive download address: www.co-trust.com

Cable appearance:

Figure M-1 Programming cable appearance

N How to Use Programming Card

•		
	Specifications	Description
Pa contractor	Title	Programming card
- OF Directioner	Order no.	CTS7 291-PC001
	Dimension	(W×H×D) 63 mm ×33 mm × 17 mm
Remarks:		

- CTH200 series PLC realize data storage and portable programming by corresponding card.
- CTH200 series PLC do not support third-party memory card.
- H228XL do not support CTSC 291-PC001 V1.0(version 128K)

[Security]

Data in programming card is encrypted to keep away from being maliciously cracked or modified. [Interface]

Connect the right RS485 port.

Note

Programming card record CPU's type while downloading program from it. Uploading program is not allowed if the CPU's type is inappropriate. There is no need to distinguish relay or transistor for the same type PLC.

Using programming card [Flow chart]

[Functions]

※ Download

Download the STL programming block and library, system block and data block of microwin project into programming card storage.

Steps:

Step 1: First cut the PLC power off, then insert the programming card to the specific port.

Step 2: Switch the DIP to "STOP", then power on.

Step 3: The system enter "programming card download mode" in default if the card is effective. The orange light always on so just click download. Click icon "**∠**" on toolbar or click "file"-> "download" to download the programming PLC and programming card.

<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	PLC	Debug	<u>T</u> ools
New	,			Cta	rl+N
<u>O</u> pe	n			Ct	r1+0
<u>C</u> 10)se				
Sav	/e			Ct	rl+S
Save <u>A</u> s					
Set Pass <u>w</u> ord					
Īmī	ort				
<u>E</u> xport					
Մթյ	.oad			Ct	rl+V
Dow	nload.			Ct	rl+D

Note: For the block that didn't download to programming card, it will generate a default one which would upload to CPU when needed.

Step 4: If programming card is invalid, the system would enter in common mode.

Step 5: If you need to set the limit use times of programming card, set by modify value of SMB100 before downloading any block for the default is no limit(the value of SMB100 is 0)

Step 6: If you don't want the the programming block or data block of aimed PLC to be covered, set by modify the value of SMB111 for the default is cover all. Refer to table in **upload** for specific definition of SMB111.

Step 7: Download the programming blocks to CPU in turns.

Step 8: Send all the blocks to be downloaded to programming card(the orange light flash during downloading and stays on after all the transmissions).

Step 9: After downloading all the blocks, you can cut the CPU power off when orange light stays on over 10s from flash status, then pull out the programming card. CPU will not work until cut off the power and pull out the programming card if you finish downloading blocks.

Note

- A longer time will need to transmit blocks into programming card if you choose to download under baud rate of 187.5K bps
- CPU will clear all the data of programming card and set limit times of using the card when it confirm the first block has been downloaded.
- If you choose to cover data, set SMB111 before downloading blocks
- For the sake of security, it is recommended to download system block into programming card or it will turn to default as in the new project. Power off in the process of downloading may lead to contents in card lost.

Definition of Indicator lights

Indicator lights	OFF	FLASH	ON
SF	Normal	Error in transmission	
STOP -orange		Data transmitting	Normal
SMB100	Set limit times of progra	amming	
SMB111	Cover function-control byte		

Flash frequency: About 0.5s(accuracy is not required)

※ Upload

All the blocks in programming card can be uploaded to CPU to update the EPROM.

Steps:

Steps 1: First cut the PLC power off, then insert the programming card to the specific port.

Steps 2: Switch the DIP to "RUN", then power on.

Steps 3: The system enter "programming card upload mode" in default if the card is effective. The green light stays on.

Steps 4: The system enter normal mode if the programming card is ineffective.

Steps 5: All the existing blocks would be cleared and then be read into EPROM if CPU detect card.

Note: For the block that didn't download to programming card, it will generate a default one which would upload to CPU when needed.

Steps 6: RUN green light will flash during the process of uploading. You can cut the PLC power off and pull out the card when green light stays on over 10s from flashing.

Steps 7: Repower the PLC, a new STL program would be executed.

Conditions that may lead to upload failure:

1) The using times for programming card reach limit9(no effect on existing blocks in CPU)

2) Information calibration failure(existing program in CPU may be deleted)

3) Other blocks in programming card calibration failure(blocks without error will be uploaded into CPU)

4) for the CPU with password protection, the uploading will fail so as to keep the security of user program if the programming card haven't been set as covering blocks(that means not set Bit0 as 0)

The SF red light will flash when upload failure.

<Note >

SMB110 to SMB111 are used for uploading control data, detailed definition as following:

SM address	Function details
SMB110	Enforce to start the upload protection function
SMB111	Programming coverage:
	0 – cover program block and data block;
	1 -not cover program block, cover data block
	2 –cover program block, not cover data block;
	3 – not cover program block and data block;
	4 –same with 0

Definition of lights status

U			
Lights	OFF	FLASH	ON
RUN light(green)		Loading program	Normal
SF light	Normal	Error	
SMB101	Left times can be used(in	cluding this time), display 2	255 if there is no limit.

Flash frequency: about 0.5s(accuracy is not required)

% Limit of using times for programming card

You can set the limit of using times for programming card, which minus one every time the uploading complete.

Steps:

Steps 1: When PLC is under "programming card download mode", set limit of using times by using SM100 and display at SMB101 position before download first block in MicroWIN

Steps 2: The limit of using times for programming card minus one every time the uploading complete(including the third time of uploading failure).

Parameter definition

Value	Explanation	
0	No limit	
1-255	Times available	
Default	0	

O Battery Card and Memory Card

CTH200 PLC equip with specific battery card, and the high-performance series CPU (H224X/H226XL/H228XL) support memory card.

Туре	Description	Order No.
Momony card	64K(user program, recipe and data record)	CTS7 291-MC064
Memory card	256K(user program, recipe and data record)	CTS7 291-MC256
Battery card	Data-hold time: 200d, typical	CTH2 291-8BA33

Steps to change battery card or memory card:

- 1) Unplug the battery cover in power cut off.
- 2) Take down the existing battery card in vertical direction to avoid damaging slot.
- 3) Insert the new battery card into slot and cover the cap.

Backup the data before cut the PLC power off to change the battery.

Caution

1. Please change battery card in same specification. Be careful in case to damage other components. And save data before changing.

2. The use method of COTRUST memory card is same as SIMENS'. Use it to store user program, recipe and data record, but for CTH200 the contents in storage card will not copy to PLC automatically after restart S

P Special Function Register

SMB0: System status bit

The 8 bits of SMB0 play a special role in the system. At the end of each scan cycle, the PLC will update the 8 bits. Users can use the special functions of these bits in the program to achieve some common operations, the details shows as following table:

SMB0 bit	Function description(read only)
SMO O	The bit is always on and can be used as enable bit if you want a section of
510.0	a program to execute every cycle.
SM0 1	This bit is only 1 at first scan and can be used as the enable bit to initialize
5100.1	segment.
	If the power-off hold data is lost, the bit opens a scan cycle. This bit can be
SM0.2	used as an error memory bit or to activate enable bits in a particular startup
	order.
SM0.2	When the power is turned on into RUN mode, the bit is switched on for a
510.5	scan cycle. And it can provide machine warm-up time before operation.
SM0.4	This bit offers a square wave clock pulse period 1 min, 30s on and 30s off.
SM0.5	This bit offers a square wave clock pulse period 1sec, 0.5s on and 0.5s off.
SMO 6	The bit is the scanning clock, set 1 for this scan and 0 for the next, which
510.0	also can be used as enable bit of scan counter.
	This bit indicates PLC switch (0: TERM, 1: RUN) position, be used as the
SM0.7	enable bit of the FPORT communication program segment, when the
	switch is at the RUN position, the FPORT communication mode is effective,
	PPI communication is effective when switch to TERM.

SMB1: Instruction execution status bit

The 8 bits of SMB1 are used to indicate errors or special states in the execution of certain instructions, as detailed in the following table:

SMB1 bit	Function description(read only)
SM1.0	Set 1 when instruction executed as 0
SM1.1	Set 1 when instruction execution results overflow or detect illegal value
SM1.2	Set 1 when instruction execution results is negative
SM1.3	Set 1 when the divisor in the instruction is 0
SM1.4	Set 1 if the appended table length exceeds the table range when executing
	ATT instructions
SM1.5	Set 1 if the table is empty when executing a LIFO or FIFO instruction,
SM1.6	Set 1 when trying to convert a non-BCD number to a binary number
SM1.7	Set 1 When ASCII code cannot be converted to a valid hexadecimal
	number

SMB2: FPORT receive character

SMB2 is the FPORT receive character buffer, every character received is put here under FPORT

communication mode for program easy to read. Detailed description shows as following table:

SM2 bit	Function description(read only)
SMB2	This byte includes every character of port 0 or 1 in FPORT communication

SMB3: FPORT odd-even parity error

SMB3 is used to display FPORT parity errors. In FPORT communication mode, set SM3.0 1 when detecting checksum error in the received character. Normally, use this bit to detect FPORT information characters for transmission errors before the program receives and reads the information character values stored in SMB2. Detailed description is shown in the following table:

SMB3 bit	Function description(read only)
SM2 0	This bit indicates if there is parity error in port 0 and 1
51013.0	0: No error, 1: Error
SM3.1~SM3.7	Reserved

SMB4: Queue overflow

SMB4 contains interrupt queue overflow bits, whether interrupts allow flag bits, send idle bits, and whether mandatory flag bits exist. Queue overflow indicates either that interrupts occur more frequently than the CPU, or it has been disabled by the global interrupt forbidden instruction. Detailed description is shown in the following table:

SMB4 bit	Function description(read only)
SM4.0	Turned on when the communication interrupt queue overflows. Reset when the queue is empty and control returns to the main program, use only in interrupt routine
SM4.1	Turned on when the input interrupt queue overflows. Reset when the queue is empty and control returns to the main program, use only in interrupt routine
SM4.2	Turned on when the timing interrupt queue overflows. Reset when the queue is empty and control returns to the main program, use only in interrupt routine
SM4.3	Turn on when detecting run time program error
SM4.4	This bit reflects the global interrupt enabled state, turn on when interrupts are enabled.
SM4.5	Turn on when port 0 transmitter in idle
SM4.6	Turn on when port 1 transmitter in idle
SM4.7	Turn on when any memory position is forced

SMB5: I/O status

SMB5 contains the I/O error status bits in the system. Which provide information about the I/O errors, as detailed in the following table:

SMB5 bit	Function description(read only)
SM5.0	Set 1 when I/O error
SM5.1	Set 1 when I/O bus connected too many digital I/O
SM5.2	Set 1 when I/O bus connected too many analog I/O
SM5.3	Set 1 when I/O bus connected too many intelligent I/O modules
SM5.4~SM5.7	Reserved

SMB6: CPU identification register

SMB6 is CPU identification (ID) register, use for identify CPU type, as detailed in the following table:

SM address	Function description(read only)
SMB6	CPU ID register
SM6.0~SM6.3	Reserved
	Use for identifying CPU type
	0000: CPU212, CPU222; 0010: CPU214, CPU224;
310.4~310.7	0110: CPU221; 1000: CPU215;
	1001: CPU216, CPU226, CPU226XM; 1110: H35-00;

SMB6 format:

MSB							LSB
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
х	х	х	х	r	r	r	r
0000: CPL	J212, CPU2	22;			Rese	erved	
0010: CPU214, CPU224;							
0110: CPU221; 1000: CPU215;							
1001: CPU216, CPU226, CPU226XM;							
1110: H35-	00						

SMB8 to SMB21: I/O module and error register

SMB8 to SMB21 are prepared in byte pair form (two adjacent bytes) for extension modules 0 to 6. The even-bit byte of each pair of bytes is the module identification register, and the odd-bit byte is the module error register. The former marks the module type, I/O type, input and output points; while the latter is the I/O error detected against corresponding module. Detailed description is shown in the following table:

SM address	Function description(read only)
SMB8	Module 0 identification register
SMB9	Module 0 error register
SMB10	Module 1 identification register
SMB11	Module 1 error register
SMB12	Module 2 identification register
SMB13	Module 2 error register
SMB14	Module 3 identification register
SMB15	Module 3 error register
SMB16	Module 4 identification register
SMB17	Module 4 error register
SMB18	Module 5 identification register
SMB19	Module 5 error register
SMB20	Module 6 identification register
SMB21	Module 6 error register

Even byte (module ID register) format:

MSB						L	SB
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
m	t	t	а	i	i	q	q
m: If there	tt: Module type		a: I/O type	ii: Inputs		qq: Outputs	
is module	00-Non-intelligent		0—Digital	00—No input		00—No output	
0—Module	I/O module		1—Analog	012 Al or 8 DI		012 AQ or 8 DQ	
1—No	01—Intelligent			104 Al	or 16 DI	104 AQ	or 16 DQ
module	module			118 AI	or 32 DI	118 AQ	or 32 DQ
	10—Reserved						
	11 Reser	ved					

Odd byte (module error register) format:

MSB							LSB
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
С	0	0	b	r	р	f	t
с:			b: Bus or	r: Over	p: User	f: Fuse	t: Terminal
Configuration			parity error	range error	power error	error	block loose
error			0 No error	0 No	0 No error	0 No	error
0—No error			1 Error	error	1 Error	error	0 No error
1 Error				1 Error		1 Error	1 Error

SMW22 to SMW26: Scanning time

SMW22, SMW24 and SMW26 offer information of scanning time: minimum scanning time, maximum scanning time and last scanning time calculate by ms

SM address	Function description(read only)
SMW22	Last scanning time
SMW24	Recorded minimum scanning time after entering RUN mode
SMW26	Recorded maximum scanning time after entering RUN mode

SMB28 to SMB29: Analog potentiometer

Special memory bytes 28 and 29 contain values corresponding to analog potentiometer 0 and 1 axes position. The analog potentiometer is located in front of the CPU behind the access gate. Use a screwdriver to adjust the potentiometer (increasing clockwise or decreasing counterclockwise). This type of read-only value can be used by a program to perform various functions, such as updating the current value for a timer or counter, inputting or changing a preset value, or setting limits. It also has a rated range of 0 to 255, and reliable repeats of ± 2 counts. Detailed description is shown in the following table:

SM address	Function description(read only)
SMB28	Input of memory analog regulator 0. Updating it for every scan in STOP/RUN mode
SMB29	Input of memory analog regulator 1. Updating it for every scan in STOP/RUN mode

SMB30 and SMB130: FPORT control register

SMB30 controls FPORT 0 communication mode, and SMB130 controls FPORT 1 communication mode. You can write and read between SMB30 and SMB130 which can be used to set operation mode of FPORT communication and provide the choice between the FPORT and the protocols supported by the system. See the following table for detailed description:

SM address	Function description
SMB30	FPORT 0 control register
SMB130	FPORT 1 control register
SM30.0~SM30.1	Port 0 communication protocol selection
SM130.0~SM130.1	Port 1 communication protocol selection
SM30.2~SM30.4	FPORT 0 baud rate
SM130.2~SM130.4	FPORT 1 baud rate
SM30.5	Each character data bit of FPORT 0
SM130.5	Each character data bit of FPORT 1
SM30.6~SM30.7	FPORT 0 parity selection
SM130.6~SM130.7	FPORT 1 parity selection

FPORT control byte format:

MSB							LSB
Bit 7	Bit 6	Bit 5	Bit 4 Bit 3 Bit 2		Bit 1	Bit 0	
р	р	d	b	b	b	m	m
Pp: Parity	/ selection	d: Each character	bbb: FP	ORT bau	d rate	Mm: Proto	col setting
00—No p	arity	data bit	00038	400 bps		00—Point-	point port
01—Ever	1—Even parity 08 bits data bit 0011920		l19200 bps p		protocol(PPI/slave		
10 No p	arity	17 bits data bit	7 bits data bit 0109600 bps statio		station mod	station mode)	
11—Odd	parity	arity 0114800 bps		01—FPOR	T protocol		
			10024	00 bps		10PPI/	master
			10112	00 bps		station mod	de
			11011	5200 bps		11—Reser	ved(defaul
			111576	600 bps		t PPI/slav	e station
						mode)	

<Note> When select mm = 10(PPI master station), PLC will become a network master station, able to execute NETR and NETW instruction. Ignore 2 to 7 bit in PPI mode.

SMB31 and SMW32: Permanent storage (EEPROM) write control

With control of the user program, you can store the data of V storage into permanent storage, also known as non-volatile storage. First, store the address into SMW32, then store the saved command into SMB31. Once you issue the storage command, you cannot change the value of V storage until the CPU completes the storage operation and SM31.7 is set to 0.

At the end of each scan cycle, the CPU checks for a command to store data in the permanent storage area. If so, store data into permanent storage. Detailed description is shown in the following table:

SM address	Function description						
SMB31	Permanent storage command register						
01404 0 01404 4	Data size to be saved						
310131.0~310131.1	00 =Byte; 01 =Byte; 10 =Word; 11 =Double Word						
SM31.2~SM31.6	Preserved, always 00000						
01404 7	Store into permanent storage, S7-200 reset the bit after each						
	storage operation.						
510151.7	0 = No request of executing storage						
	1 = User program applies to permanent storage for data storage						
SMW32	The V memory address of stored data, which is offset from V0.						
	When executing a storage command, store data into the						
	corresponding location in permanent storage.						

SMB34 and SMB35: Timing interrupt interval register

SMB34 and SMB35 define the interval between timed interrupts 0 and 1. You can specify the time interval (incremented by 1ms) from 1ms to 255ms. If the corresponding timed interrupt event is connected to an interrupt service routine, the CTH200CPU gets the interval value. To change the interval, you must either reallocate timed interrupt events to the same or another interrupt program, or terminate timed interrupt events by interrupt detach.

SM address	Function description
SMB34	Time interval value of timing interrupt 0
SMB35	Time interval value of timing interrupt 1

SMB36 to SMB65: HSC0, HSC1 and HSC2 register

SMB36 to SMB65 are used to monitor and control operation of HSC0, HSC1 and HSC2. Detailed description is shown in the following table:

SM address	Function description				
HSC0					
SMB36	HSC0 counter status				
SM36.0~SM36.4	Reserved				
SM36.5	HSC0 current count direction bit: 1=addition count				
SM36.6	HSC0 current value equal to preset value bit: 1=equal				
SM36.7	HSC0 current value more than preset value bit: 1=more than				
SMB37	HSC0 control byte				
SM37.0	Reset valid control bit: 0= high level reset valid, 1=low level reset valid				
SM37.1	Reserved				
SM27.2	Count speed selection of orthography counter: 0=4x count speed;				
510157.2	1=1x count speed				
SM37.3	HSC0 direction control bit: 1= addition count				
SM37.4	HSC0 update direction: 1= update direction				
SM37.5	HSC0 update preset value: 1=write new preset value to HSC0				
SM37.6	HSC0 update current value: 1=write new initial value to HSC0				
SM37.7	HSC0 valid bit: 1=valid				

CMD 20	HSC0 new initial value, set SM37.6 as 1 after write new value into				
SMD38	SMD38, then the current value will be updated				
OMD 40	HSC0 new preset value, set SM37.5 as 1 after write new value into				
SMD42	SMD42, then the current value will be updated				
HSC1					
SMB46	HSC1 counter status				
SM46.0~SM46.4	Reserved				
SM46.5	HSC1 current count direction bit: 1=addition count				
SM46.6	HSC1 current value equal to preset value bit: 1=equal				
SM46.7	HSC1 current value more than preset value bit: 1=more than				
SMB47	HSC1 control byte				
SM47.0	Reset valid control bit: 0= high level reset valid, 1=low level reset valid				
SM47.1	HSC1 start valid level control bit: 0= high level, 1=low level				
0147.0	Count speed selection of orthography counter: 0=4x count speed;				
SM47.2	1=1x count speed				
SM47.3	HSC1 direction control bit: 1= addition count				
SM47.4	HSC1 update direction: 1= update direction				
SM47.5	HSC1 update preset value: 1=write new preset value to HSC0				
SM47.6	HSC1 update current value: 1=write new initial value to HSC0				
SM47.7	HSC1 valid bit: 1=valid				
SMD48	HSC1 new initial value, set SM47.6 as 1 after write new value into				
	SMD48, then the current value will be updated				
SMD52	HSC1 new preset value, set SM47.5 as 1 after write new value into				
510052	SMD52, then the current value will be updated				
HSC2					
SMB56	HSC2 counter status				
SM56.0~SM56.4	Reserved				
SM56.5	HSC2 current count direction bit: 1=addition count				
SM56.6	HSC2 current value equal to preset value bit: 1=equal				
SM56.7	HSC2 current value more than preset value bit: 1=more than				
SMB57	HSC2 control byte				
SM57.0	Reset valid control bit: 0= high level reset valid, 1=low level reset valid				
SM57.1	HSC1 start valid level control bit: 0= high level, 1=low level				
SM57.2	1=1x count speed				
SM57.3	HSC2 direction control bit: 1= addition count				
SM57.4	HSC2 update direction: 1= update direction				
SM57.5	HSC2 update preset value: 1=write new preset value to HSC0				
SM57.6	HSC2 update current value: 1=write new initial value to HSC0				
SM57.7	HSC2 valid bit: 1=valid				
	HSC2 new initial value, set SM57.6 as 1 after write new value into				
SMD58	SMD58, then the current value will be updated				
SMD62	HSC2 new preset value, set SM57.5 as 1 after write new value into				
SMD62	SMD62, then the current value will be updated				

<Note>

1) The counter status bit is only valid in interrupt program triggered by HSC event.

2) Do not reset new current value in program when using the HSC external reset interrupt event, and re-enable the counter in the interrupt program connected to the event, which will result serious errors.

SMB66 to SMB85: PTO/PWM register

SMB66 to SMB85 are used to monitor and control the pulse chain output and PWM functions of PLC (pulse) commands. Detailed description is shown in the following table:

SM address	Function description					
PTO0						
SMB66	PTO0 status byte					
SM66.0~SM66.3	Reserved					
SMCC 4	PTO0 envelope termination: 0=no error, 1=terminate for					
3100.4	incremental error					
SM66 5	PTO0 envelope termination: 0=terminate not by user command;					
3100.5	1=terminate by user command					
SM66 6	PTO0 pipe overflow(clear by system when using external					
5100.0	envelope, or by user program): 0=no overflow, 1=overflow					
SM66.7	PTO0 free bit: 0=PTO busy, 1=PTO free					
SMB67	Control pulse string output and PWM of Q0.0					
SM67.0	PTO0/PWM0 update cycle: 1=write new cycle					
SM67.1	PWM0 update pulse width: 1=write new pulse width					
SM67.2	PTO0 update pulse quantity: 1=write new pulse quantity					
SM67.3	PTO0/PWM0 reference time unit: 0=1 µs/grid, 1=1 ms/grid					
SM67.4	Synchronous update PWM0: 0=asynchronous update,					
510167.4	1=synchronous update					
	PTO0 operation: 0= single segment operation(cycle and pulse					
SM67.5	store in SM storage), 1=multiple segment operation(envelope					
	table involved in V storage area)					
SM67.6	PTO0/PWM0 mode selection: 0=PTO, 1=PWM					
SM67.7	PTO0/PWM0 valid bit: 1=valid					
SMW68	PTO0/PWM0 cycle(2~65, 535 time standard)					
SMW70	PWM0 pulse width (0~65, 535 time standard)					
SMD72	PTO0 pulse count (1~2321)					
PTO1						
SMB76	PTO1 status byte					
SM76.0~SM76.3	Reserved					
01170 4	PTO1 envelope termination: 0=no error, 1=terminate for					
SM76.4	incremental error					
SM76.5	PTO1 envelope termination: 0=terminate not by user command;					
	1=terminate by user command					
SM76 6	PTO1 pipe overflow(clear by system when using external					
SM76.6	envelope, or by user program): 0=no overflow, 1=overflow					

SM76.7	PTO1 free bit: 0=PTO busy, 1=PTO free				
SMB77	Control pulse string output and PWM of Q0.1				
SM77.0	PTO1/PWM1 update cycle: 1=write new cycle				
SM77.1	PWM1 update pulse width: 1=write new pulse width				
SM77.2	PTO1 update pulse quantity: 1=write new pulse quantity				
SM77.3	PTO1/PWM1 reference time unit: 0=1 µs/grid, 1=1 ms/grid				
SM77 /	Synchronous update PWM1: 0=asynchronous update,				
510177.4	1=synchronous update				
	PTO1 operation: 0= single segment operation(cycle and pulse				
SM77.5	store in SM storage), 1=multiple segment operation(envelope				
	table involved in V storage area)				
SM77.6	PTO1/PWM1 mode selection: 0=PTO, 1=PWM				
SM77.7	PTO1/PWM1 valid bit: 1=valid				
SMW78	PTO1/PWM1 cycle(2~65, 535 time standard)				
SMW80	PWM1 pulse width (0~65, 535 time standard)				
SMD82	PTO1 pulse count (1~2321)				

SMB86 to SMB94 and SMB186 to SMB194: receiving information control

SMB86 to SMB94 and SMB186 to SMB194 are used to control and read status about receiving information. Detailed description is shown in the following table:

SM address	Function description					
P0 received information						
SMB86	P0 receive information status byte					
SMB87	P0 receive information control byte					
SMB88	P0 start of information character					
SMB89	P0 end of information character					
SMW90	The P0 free row interval is given in ms. The first character received at the end of free line time is the beginning of new information.					
SMW92	P0 inter-character/inter-message timer timeout value (represented by ms). If the timeout, stop receiving message.					
	Maximum characters P0 received(1~255 byte)					
SMB94	<note> This area must set as maximum buffer you want, even if</note>					
	character count information is not used to terminate it.					
P0 received inform	ation					
SMB186	P1 receive information status byte					
SMB187	P1 receive information control byte					
SMB188	P1 start of information character					
SMB189	P1 end of information character					
SMW190	The P1 free row interval is given in ms. The first character received at the end of free line time is the beginning of new information.					
SMW192	P1 inter-character/inter-message timer timeout value (represented by ms). If the timeout, stop receiving message.					
	Maximum characters P1 received(1~255 byte)					
SMB194	<note> This area must set as maximum buffer you want, even if</note>					
	character count information is not used to terminate it.					

Receiving information status byte format:

MSB							LSB
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
n	r	E	0	0	t	С	р

.

n = 1: Receive user order to stop receiving information

r = 1: Input parameter error or no start or end condition result in information receiving end

e = 1: Receive end character

t = 1: Receive information end: timeout

c = 1: Receive information end: over maximum character

p = 1: Receive information end: parity error

Receiving information control byte format:

MSB

MSB							LSB
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
en	SC	ес	il	c/m	tmr	bk	0

en: 0 = Forbid receiving information function

1 = Allow receiving information function

Allow/forbid receive information bit each time execute RCV instruction

sc: 0 = Ignore SMB88 or SMB188

1 = Use value of SMB88 or SMB188 to detect start information

ec: 0 = Ignore SMB89 or SMB189

1 = Use value of SMB89 or SMB189 to detect start information

- il: 0 = Ignore SMW90 or SMW190
 - 1 = Use value of SMW90 or SMW190 to detect free status
- c/m: 0 =Internal character timer

1 = Inform timer

tmr: 0 = Ignore SMW92 or SMW192

1 = Terminate receiving when SMW92 or SMW192 timing timeout.

bk: 0 = Ignore interrupt condition

1 = Use interrupt condition as start of information detection

SMW98: Expansion I/O bus error

SMW98 offer information about expansion I/O bus error. Detailed description is shown in the following table:

SM address	Function description
	Each time a checksum error occurs on the extended bus, it increases
SMW98	by 1. When the system power on or the user program writes zero, it can
	be reset.

SMB110 to SMB111: programming card upload control

SMB110 to SMB111 Use for programming card load control:

SM address	Function description							
SMB110	Start enforcing load protection function							
SMB111	Programming card cover item:							
	0 - Cover programming block and data block; 1 - Not cover							
	programming block, cover data block							
	2 - Cover programming block, not cover data block; 3 - Not cover							
	programming block and data block							
	4 – Same when ADD is 0							

SMB114 to SMB115: expansion board information

SMB114: Expansion board module type

SMB114 = 0x20: CAN

0x19: 2AI/1AQ

0x1E: 4AI/2AQ

Detailed description is shown in the following table:

Bti7	Bti6	Bti5	Bti4	Bti3	Bti2	Bti1	Bti0
	E	TT t II		00			
E	1: Module do	o not exist					
If there is	0: Module ex	kist					
module							
тт	00	Non intelligent module					
(module	01	Intellige	Intelligent module				
(module type)	10	Special	Special non intelligent module(7PF)				
type)	11	cotrust	intelligen	t module(P	ID)		
	Non	0: Digita	al				
t	intelligent	1: 4 00	20				
(module	module	1: Analog					
subtype)	Intelligent	0: Normal intelligent					
	module	1: Cotrust intelligent module(PID)					
	Non	00	No input	t			
	intelligent	01	AI/8DI				
II(inputs)		10	2AI/16D	I			
n(inputs)	module	11	4AI/32D	I			
	Intelligent	Reserved					
	module						
	Non	00	No outp	ut			
	intelligent	01	1AO/8D	0			
OO (outputs)		10	2AO/8D	0			
	modulo	11	4AO/321	00			
	Intelligent module	Reserved					

SMB115: Expansion board status

SMB115 = 0x0: Module no error

0x255: Expansion board visit error

Others: Expansion board internal diagnosis

SMW116 to SMW126: Expansion board analog mapping area

Corresponding relation of mapping area:

Expansion board	Analog mapping area
241/140	SMW116 corresponds to AIW0; SMW118 corresponds to AIW2;
ZAI/TAQ	SMW124 corresponds to AQW0
	SMW116 corresponds to AIW0; SMW118 corresponds to AIW2;
441/240	SMW120 corresponds to AIW4
4AI/2AQ	SMW122 corresponds to AIW6; SMW124 corresponds to AQW0;
	SMW126 corresponds to AQW2

SMB131 CAN expansion board access cycle setting

CAN expansion board visit cycle (ms), default 1ms when set as 0

SMB136 to SMB165: HSC3, HSC4 and HSC5 register

SMB136 to SMB165 use for monitor and control HSC3, HSC4 and HSC5operation. Detailed description is shown in the following table:

SM address	Function description				
HSC3					
SMB136	HSC3 counter status				
SM136.0~4	Reserved				
SM136.5	HSC3 current count direction bit: 1=addition count				
SM136.6	HSC3 current value equal to preset value bit: 1=equal				
SM136.7	HSC3 current value more than preset value bit: 1=more than				
SMB137	HSC3 control byte				
SM137.0~2	Reserved				
SM137.3	HSC3 direction control bit: 1= addition count				
SM137.4	HSC3 update direction: 1= update direction				
SM137.5	HSC3 update preset value: 1=write new preset value to HSC3				
SM137.6	HSC3 update current value: 1=write new initial value to HSC3				
SM137.7	HSC3 valid bit: 1=valid				
SMD129	HSC3 new initial value, set SM137.6 as 1 after write new value into				
310130	SMD138, then the current value will be updated				
SMD142	HSC3 new preset value, set SM137.5 as 1 after write new value into				
31010142	SMD142, then the current value will be updated				
HSC4					
SMB146	HSC4 counter status				
SM146.0~4	Reserved				
SM146.5	HSC4 current count direction bit: 1=addition count				
SM146.6	HSC4 current value equal to preset value bit: 1=equal				

SM146.7	HSC4 current value more than preset value bit: 1=more than
SMB147	HSC4 control byte
SM147.0	Reset valid control bit: 0= high level reset valid, 1=low level reset
510147.0	valid
SM147.1	Reserved
SM147.2	Count speed selection of orthography counter: 0=4x count speed;
000147.2	1=1x count speed
SM147.3	HSC4 direction control bit: 1= addition count
SM147.4	HSC4 update direction: 1= update direction
SM147.5	HSC4 update preset value: 1=write new preset value to HSC4
SM147.6	HSC4 update current value: 1=write new initial value to HSC4
SM147.7	HSC4 valid bit: 1=valid
SMD1/9	HSC4 new initial value, set SM147.6 as 1 after write new value into
310140	SMD148, then the current value will be updated
SMD152	HSC4 new preset value, set SM147.5 as 1 after write new value into
51VID 152	SMD152, then the current value will be updated
HSC5	
SMB156	HSC5 counter status
SM156.0~4	Reserved
SM156.5	HSC5 current count direction bit: 1=addition count
SM156.6	HSC5 current value equal to preset value bit: 1=equal
SM156.7	HSC5 current value more than preset value bit: 1=more than
SMB157	HSC5 control byte
SM157.0~2	Reserved
SM157.3	HSC5 direction control bit: 1= addition count
SM157.4	HSC5 update direction: 1= update direction
SM157.5	HSC5 update preset value: 1=write new preset value to HSC5
SM157.6	HSC5 update current value: 1=write new initial value to HSC5
SM157.7	HSC5 valid bit: 1=valid
SMD459	HSC5 new initial value, set SM157.6 as 1 after write new value into
3001 UIVIC	SMD168, then the current value will be updated
SMD162	HSC5 new preset value, set SM157.5 as 1 after write new value into
SIVID 102	SMD162, then the current value will be updated

<Note>

1 The counter status bit is only valid in the interrupt program triggered by HSC event.

2 When you use the HSC external reset interrupt event, do not reset the new current value in the program, and then re-enable the counter in the interrupt program connected to the event, this operation will cause serious errors.

SM address	Function description				
PTO0					
SMB66	PTO0 status byte				
SM66.0~SM66.3	Reserved				

	PTO0 envelope termination: 0=no error, 1=terminate for incremental				
510100.4	error				
	PTO0 envelope termination: 0=terminate not by user command;				
SIVI00.5	1=terminate by user command				
SMCCC	PTO0 pipe overflow(clear by system when using external envelope,				
SIVI00.0	or by user program): 0=no overflow, 1=overflow				
SM66.7	PTO0 free bit: 0=PTO busy, 1=PTO free				
SMB67	Control pulse string output and PWM of Q0.0				
SM67.0	PTO0/PWM0 update cycle: 1=write new cycle				
SM67.1	PWM0 update pulse width: 1=write new pulse width				
SM67.2	PTO0 update pulse quantity: 1=write new pulse quantity				
SM67.3	PTO0/PWM0 reference time unit: 0=1 µs/grid, 1=1 ms/grid				
SMG7 4	Synchronous update PWM0: 0=asynchronous update,				
510107.4	1=synchronous update				
	PTO0 operation: 0= single segment operation(cycle and pulse store				
SM67.5	in SM storage), 1=multiple segment operation(envelope table				
	involved in V storage area)				
SM67.6	PTO0/PWM0 mode selection: 0=PTO, 1=PWM				
SM67.7	PTO0/PWM0 valid bit: 1=valid				
SMW68	PTO0/PWM0 cycle(2~65, 535 time standard)				
SMW70	PWM0 pulse width (0~65, 535 time standard)				
SMD72	PTO0 pulse count (1~2321)				

SMB166 to SMB185: PTO0, PTO1 envelope definition table

SMB166 to SMB185 use for display quantity of envelope step and envelope table, also the V storage table address (H224/H226L not support; H224X/H226XL/H228XL support) Detailed description is shown in the following table:

SM address	Function description
PTO0	
SMB166	PTO0 envelope step current count value
SMB167	Reserved
SMW168	PTO0 envelope table V storage address(offset fromV0)
SMB170	Linear PTO0 status byte
SMB171	Linear PTO0 result byte
SMD172	Specifies the frequency of the linear PTO0 generator generates when
SIVID172	operating in manual mode. The frequency is a bit integer in Hz.
PTO1	
SMB176	PTO1 envelope step current count value
SMB177	Reserved
SMW178	PTO1 envelope table V storage address(offset fromV0)
SMB180	Linear PTO1 status byte
SMB181	Linear PTO1 result byte
SMD182	Specifies the frequency of the linear PTO0 generator generates when
	operating in manual mode. The frequency is a bit integer in Hz.

SM195: Communication status

SM195.6	SM195.6=1 after CPU connect to remote server, or set as 0						
	Control whether heartbeat packets are sent in TCP_Modbus						
SM195.7	communication over time. SM195.7=1, heartbeat packet sent out after						
	communication timeout; Otherwise do not send; Default is 0.						

SMB200 to SMB549: Intelligent module status

SMB200 to SMB549 reserve storage intelligent expansion module information, detailed description is shown in the following table:

0 slot intelligent module	1 slot intelligent module	2 slot intelligent module	3 slot intelligent module	4 slot intelligent module	5 slot intelligent module	6 slot intelligent module	Descriptio n
SMB200 ~215	SMB250 ~265	SMB300 ~315	SMB350 ~365	SMB400 ~415	SMB450 ~465	SMB500 ~515	Module name(16 ASCII characters)
SMB216 ~219	SMB266 ~269	SMB316 ~319	SMB366 ~369	SMB416 ~419	SMB466 ~469	SMB516 ~519	S/W revise number (4 ASCII characters)
SMW220	SMW270	SMW320	SMW370	SMW420	SMW470	SMW520	Error code
SMB222 ~249	SMB272 ~299	SMB322 ~349	SMB372 ~399	SMB422 ~449	SMB472 ~499	SMB522 ~549	Information related to specific module

Q Product Oder Info.

Table P-1 Products Oder info

Specifications	Order No.	
СРИ		
CPU H224 12KB program space/8KB data space, 24VDC,		
14DI/10DO transistor source outputs, 0.5A, one PPI, one Freeport,	CTH2 214-1AD33-0X24	
one EtherCAT port, 3*50KHz motion control output		
CPU H224 12KB program space/8KB data space, 220VAC, 14DI/		
10DO relay outputs, 2A, one PPI, one Freeport, one EtherCAT port	CTT2 214-TBD55-0A24	
CPU H226L 12KB program space/8KB data space, 24VDC,		
24DI/16DO transistor source outputs, 0.5A, two PPI/Freeport, one	CTH2 216-2AD33-0X40	
EtherCAT port, 2*50KHz motion control output		
CPU H226L 12KB program space/8KB data space, 220VAC,		
24DI/16DO relay outputs, 2A, two PPI/ Freeport, one EtherCAT port	CTTZ 210-20035-0740	
CPU H224X 16KB program space /108KB data space, 24VDC,		
14DI/10DO transistor source outputs, 0.5A, one PPI, one Freeport,	CTH2 214-1AX33-0X24	
one EtherCAT port, 2*50KHz output(Pulse/Dir or PTO/PWM)		
CPU H224X 16KB program space /108KB data space, 220VAC,		
14DI/10DO relay outputs, 2A, one PPI, one Freeport, one EtherCAT	CTH2 214-1BX33-0X24	
port		
CPU H226XL 72KB program space /110KB data space, 24VDC,		
24DI/16DO transistor source outputs, 0.5A, two PPI/ Freeport, one	CTH2 216-2AX33-0X4	
EtherCAT port, 2*50KHz output(Pulse/Dir or PTO/PWM)		
CPU H226XL 72KB program space /110KB data space, 220VAC,	CTH2 216-28X33-0X40	
24DI/16DO relay outputs, 2A, two PPI/ Freeport, one EtherCAT port	CTT2 210-20X35-0X40	
CPU H228XL 96KB program space /10KB data space, 220VAC,	CTH2 218-3BX33-0X60	
36DI/24DO relay outputs, 2A, two PPI/ Freeport, one EtherCAT port	CTTI2 210-3DX33-0X00	
Expansion module		
SM221 digital input module, 8 inputs, 24VDC	CTH2 221-1BF32	
SM221 digital input module, 16 inputs, 24VDC	CTH2 221-1BH32	
SM221 digital input module, 32 inputs, 24VDC	CTH2 221-1BL32	
SM222 digital output module, 8 transistor source outputs, 24VDC,	CTU2 222 1PE22	
0.5A(output protection)	01112 222-101 32	
SM222 digital output module,16 transistor source outputs, 24VDC,	CTU2 222 10U22	
0.5A(output protection)	GTH2 222-TBH32	
SM222 digital output module,32 transistor source outputs, 24VDC,	CTU2 222 1BI 22	
0.5A(output protection)	GTHZ ZZZ-TBLSZ	
SM222 digital output module, 8 relay outputs, 2A	CTH2 222-1HF32	
SM222 digital output module, 8 relay outputs, 2A	CTH2 222-1HH32	
SM223 digital input/output module, 4*24VDC inputs, 4 transistor	CTH2 222-1 PE22	
source outputs, 24VDC, 0.5A(output protection)	01112 223-1DF32	
SM223 digital input/output module, 8*24VDC inputs, 8 transistor	CTH2 223-1BH32	

source outputs, 24VDC, 0.5A(output protection)	
SM223 digital input/output module, 16*24VDC inputs, 16 transistor	
source outputs, 24VDC, 0.5A(output protection)	CI II 2 223-10L32
SM223 digital input/output module, 4*24VDC inputs, 4 relay outputs,	OTU2 222 1UE22
2A	GTH2 223-THF32
SM223 digital input/output module, 8*24VDC inputs, 8 relay outputs,	CTU2 222 1DU22
2A	GTTI2 223-TFT132
SM223 digital input/output module, 16*24VDC inputs, 16 relay	
outputs, 2A	01112 223-17 L32
SM231 analog input module, 4 inputs, 0~20 mA current or \pm 5V, \pm	CTH2 231-0HC32
2.5V, 0~10V, 0~5V voltage inputs, isolated 12 bits precision	01112 231-011032
SM231 high precision analog input module, 8 inputs, voltage input,	CTH2 231-0HE32
opto-isolated, 16 bits precision	01112 201 0111 02
SM231 high precision analog input module, 8 inputs, current input,	CTH2 231-1HE32
opto-isolated, 16 bits precision	01112 231-1111 32
SM231 analog voltage input module, 8 inputs, \pm 2.5V, 0~10V, 0~5V	
voltage input, two channels available 0~20mA current input, isolated	CTH2 231-5HF32
12 bits precision	
SM231 thermal resistance temperature input module, 2*RTD,	CTH2 231-7PB32
isolated 16 bits precision	01112 201 71 002
SM231 thermal resistance temperature input module, 4*RTD,	CTH2 231-7PC32
isolated 16 bits precision	01112 201 11 002
SM231 thermocouple temperature input module, 4*TC, J/K/R/S/T/E/N,	CTH2 231-7PD32
isolated 16 bits precision	
SM231 thermocouple temperature input module, 8*TC, J/K/R/S/T/E/N,	CTH2 231-7PF32
isolated 16 bits precision	
SM231 thermocouple PID module, 4*J/K type, with intelligent PID,	CTH2 231-7TD32
isolated 16 bits precision	
SM231 thermocouple PID module, 8*J/K type, with intelligent PID,	CTH2 231-7TF32
isolated 16 bits precision	•••••••
SM231 8 current inputs, 0-20mA/4-20mA with intelligent PID, isolated	CTH2 231-7HF32
16 bits precision	
SM231 hybrid temperature input module, 2*NTC or PT100,	
2*0~20mA current or \pm 5V, \pm 10V, 0~10V, 0~5V voltage input,	CTH2 231-7ND32
isolated 16 bits precision	
SM231 thermocouple temperature input module, 8NTC/PT100,	CTH2 231-7NF32
isolated 16 bits precision	
SM231 weighing module, one sensor input, sampling frequency	
50Hz, 0.01% module precision, 6VDC 150MA excitation power output	CTH2 231-7WA32
each, isolated 16 bits precision	
SM232 analog output module, 2 inputs, \pm 10V current or 0~20mA	
current output, isolated voltage 12 bits precision or current 11 bits	CTH2 232-0HB32
precision	
SM232 analog output module, 4 inputs, \pm 10V voltage or 0~20mA	CTH2 232-0HD32
current output, isolated voltage 12 bits precision or current 11 bits	

precision	
SM235 analog input/output module, 4 voltage or current input /1	
voltage or current output, isolated voltage 12 bits precision or current	CTH2 235-0KD32
11 bits precision	
SM253 motion control module, 2 ways single phase or AB phase	
HSC inputs, 200KHz, 2-axis PTO/PWM output, 200KHz, COTRUST	CTH2 253-1BH32
motion control library	
SM277A Profibus DP slave interface module, 12M communication	
rate, opto-isolated	CTH2 211-0AA32
SM277B Profibus DP slave module, 1.5M communication rate,	
opto-isolated	CTH2 211-0AB32
SM277C CAN slave module, with 8DI/6DO, opto-isolated, 7 modules	
can be extended	CTH2 277-0AC32
SM277 Profinet slave module, 100M communication rate, 8 modules	
can be extended	CTH2 277-0PN32
Expansion board	
EBH AMS-03 analog I/O expansion board, 2 *12 bits precision	
voltage inputs, 1 *12 bits precision voltage/current output	CTH2 AWI3-033T-ED
EBH-AMS-06 analog I/O expansion board, 4 *12 bits precision	
voltage inputs, 2 *12 bits precision voltage output	
EBH-AMS-06 analog I/O expansion board,4 *12 bits precision	
voltage inputs, 2 *12 bits precision current output	GTH2 AW3-0032-ED
EBH CAN-01 master communication expansion board, 1Mbps,	
opto-isolated	CITZ CAN-UISI-ED
EBH PWM 04 charge-guided expansion board, double-channel	
voltage inputs, single-channel PWM output	CTH2 PVVIVI-0451-EB
Fittings	
PLC lithium battery	CTH2 291-8BA33
RS485 programming cable	CTS7 191-USB30
64K storage card(only for CPU H224X/H226XL/H228XL)	CTS7 291-MC064
256K storage card(only for CPU H224X/H226XL/H228XL)	CTS7 291-MC256
Programming card	CTS7 291-PC001

Address: Room 209, 210 at IC Design Industrial Park of XiLi Chaguang Road, Nanshan District, Shenzhen Hotline: 400-700-4858 E-mail: sales@co-trust.com Http: //www.co-trust.com SHENZHEN CO-TRUST TECHNOLOGY CO., LTD.

Scan for more info