

CTH300 系列高速计数器模块与高速脉冲输出模块

使用手册

版本: V1.00

发布日期: 9/2019

深圳市合信自动化技术有限公司

声明

版权声明

Copyright ©2019

深圳市合信自动化技术有限公司

版权所有,保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文件内容的部分或全部,并不得 以任何形式传播。

🍑、TrustPLC、CoPanel、COTRUST 均为合信自动化技术有限公司的商标。

本文件中出现的其它的注册商标,由各自的所有人拥有。

由于产品版本升级或其它原因,本文件内容会不定期进行更新。除非另有约定,本文件仅作为 使用参考,本文件中的所有陈述、信息和建议不构成任何明示或暗示的担保。

注意事项

CTH300 系列高速计数器模块和高速脉冲输出模块的安装、操作、维护工作仅限于合格人员执 行。对于使用本资料所引发的任何后果,合信概不负责。

在尝试使用本设备之前,请仔细阅读设备相关注意事项,务必遵守安装调试安全预防措施和操 作程序。对错误使用本设备而可能带来的危害和损害程度见下述符号说明。

警告

该标记表示

"由于没有按要求操作造成的危险,可能导致人身伤亡"

注意

该标记表示

"由于没有按要求操作造成的危险,可能会导致人身轻度或中度伤害和设备损坏"

提示

该标记表示

"对操作的描述进行必要的补充或说明"

前言

内容简介

本手册主要介绍了关于 CTH300 系列 PLC 高速计数模块和高速输出模块的安装、调试和技术规格,以及在 Magicworks PLC 和 CODESYS 软件中的配套操作。主要内容包括:

- □ 产品规范: CTH300 系列 PLC 高速计数模块和高速输出模块的产品规格和接线示意;
- □ 安装: 高速计数模块和高速输出模块的安装尺寸和安装方法;
- □ 功能介绍:高速计数模块和高速输出模块在上位机软件中支持的指令功能;
- □ 应用:介绍高速计数模块和高速输出模块在CTH300系列PLC中的相关指令具体应用过程;
- □ 附录:列出高速计数模块和高速输出模块的订货信息;

适用对象

本手册提供关于 CTH300 系列高速计数器模块和脉冲输出模块的安装和功能应用信息,为工程师、安装人员、维护人员和具有自动化常识的电工而设计。

在线支持

除本手册外,还可以在合信官网上获取相关的产品资料和技术服务。

http://www.co-trust.com

目录

芦	明		II
前	言		III
1	产品規	见范	5
	1.1	高速计数模块	5
		1.1.1 规格	5
		1.1.2 接线图	6
	1.2	高速脉冲输出模块	7
		1.2.1 规格	7
		1.2.2 接线图	
2	安装.		10
3	功能化	〉 绍	12
Ŭ			
	3.1	高速计数模块功能	
		3.1.1 CTH300-H 系列高速计数器模块功能	
		3.1.2 CTH300-C 系列高速计数器模块功能	
	3.2	高速脉冲输出模块功能	
		3.2.1 CTH300-H 系列高速脉冲输出模块功能	
		3.2.2 CTH300-C 系列高速脉冲输出模块功能	
4	应用.		34
	4.1	高速计数器模块使用	34
		4.1.1 在 CTH300-H 系列 PLC 中应用	34
		4.1.2 在 CTH300-C 系列 PLC 中应用	38
	4.2	高速脉冲输出模块使用	40
		4.2.1 在 CTH300-H 系列 PLC 中应用	40
		4.2.2 在 CTH300-C 系列 PLC 中应用	43
肾	录		47
	汇售	· · 信息	47

1 产品规范

本章主要介绍 CTH300-C 系列 PLC 的高速计数模块和高速脉冲输出模块的规格和常规特性

1.1 高速计数模块

HSC-02 模块是一款 CTH300 系列 PLC 系统扩展模块,集成 2 组高速输入,用于电机参数测量。

1.1.1 规格

表 1-1 高速计数模块的基本属性

名称	规格描述	订货号
HSC-02高速计数模块	2路, 24V 单端500KHz, 5V 差分2MHz	CTH3 HSC-020S1

表 1-2 HSC-02 的常规特性

物理特性	物理特性					
尺寸(Wxl	HxD)	34×115×100 mm				
电源特性						
总线电源电	压	+5V DC				
总线电源电	流	150mA				
LED 指示灯	丁特性 「特性					
信号指示灯	•	ON:有输入信号,OFF:无输入值	言号			
传感器连接	{					
连接类型		差分,(A+,A-)/(B+,B-)/(Z+,Z-)	单端,A/I	B/Z,	H:>18V; I	_:<3V
输入通道数	[2				
	差分输入	信号电压: 5VDC,最高输入频率	: 2MHz			
信号类型	单端输入	信号电压: 24VDC,最高输入频率	≝: 500KH	z		
	平岬相八	信号占空比允许范围: 40%-60%				
信号输入最	大保护电压	30VDC				
输入滤波		可配置,125KHz/250KHz/500KHz/1MHz/2MHz,默认为 500KHz				
正交易码		1、2、4 倍频				
计数器格式	4	32 位				
计数器清零	功能	│ · 有, Z 信号				
计数器捕捉	!功能] 行, Z 行 与				
多计数器同步计数功能		有,INT 信号				
INT 信号电压		24VDC				
INT 信号最高输入频率		500KHz				
INT 信号输入滤波		可配置,25KHz/50KHz/125KHz/2	00KHz/400)KHz/	/800KHz/1	.6MHz
		默认为 200KHz				
光电隔离		500VAC, 1min				

1.1.2 接线图

□ 单端接法

1、编码器输出为漏型(NPN)的接法

2、编码器输出为源型(PNP)的接法

注意: 启用 INT 控制信号时,该引脚与 COM 端采用单端接法。

□ 差分接法

1.2 高速脉冲输出模块

HSP-04 模块是一款 CTH300 系列 PLC 系统扩展模块,用于多轴运动控制,起承上启下的作用。每个 CPU 后面最多可以挂 8 个 HSP 模块(1 个 CPU 后面挂 4 个机架,4 个机架总共可以挂 8 个 HSP 模块;EtherCAT 从站后也最多可挂 8 个 HSP 模块)。

1.2.1 规格

表 1-3 高速脉冲输出模块的基本属性

名称	规格描述	订货号
HSP-04高速脉冲输出模块	支持4路5~24VDC 单端500kHz 或5VDC 差分4MHz	CTH3 HSP-040S1

表 1-4 HSP-04 的常规特性

於 1-4 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □					
物理特性					
尺寸 (WxHxD)	34×115×100 mm	34×115×100 mm			
电源特性					
额定输入电压	24V DC				
输入电压范围	20.4V~28.8V DC				
输入电流	100mA				
极性反接保护	有				
总线电源电压	+5VDC				
总线电源电流	60mA				
LED 指示灯特性					
信号指示灯	ON:有输入信号,OFF:无输入	信号			
输出特性					
输出通道数	4				
输出类型	差分信号	单端(NPN)信号			
最高输出频率	4MHz	500KHz			
输出信号占空比	-	50%			
额定输出电压	5VDC	5~24VDC			
输出电压范围	0~5.5VDC	5~28.8VDC			
输出信号逻辑"0"	3.8V(最小)	0.5V(最大)			
输出信号逻辑"1"	0.3V (最大)	Vcc~0.5V(最小)			
浪涌电流	8A,持续 100ms				
每点电流(最大)	20mA				
每个公共端最大电流	无	160mA			
漏电流(最大)	10μΑ				
隔离	500VAC, 1min				

1.2.2 接线图

模块说明:

- 1、右半侧为差分输出, 共 4 轴, 每轴有两组差分输出, 分别为脉冲输出和方向输出(如 A0+、A0-为脉冲, B0+、B0-为方向);输出频率最高 4MHz;
- 2、左半侧为单端输出及 24VDC 电源,单端输出共 4 轴,每轴有两组输出,分别为脉冲输出和 方向输出(如 A0 为脉冲、B0 为方向, COM 为公共端);输出频率最高 500KHz。
- 3、模块面板的上两排为模块 LED 指示灯,下两排未使用:

高速脉冲输出模块的每路输出有 4 个指示灯, 4 路共 16 个 LED 指示灯。

其中,第1路输出指示灯分别为0.0(第一排第一个)、0.1、1.0、1.1。

0.0、0.1 代表差分输出脉冲、方向; 1.0、1.1 代表单端输出脉冲、方向。第 2、3、4 路输出同理。

接线方式如下:

2 安装

CTH300 系列 PLC 的扩展模块都有安装孔,可以很方便地安装在背板上并挂接在 CPU 后。

□ 安装尺寸

高速脉冲输出模块和高速计数模块的安装尺寸见下图

□ 安装方式

CTH300 系列 PLC 既可以安装在控制柜背板上,也可以安装在标准 DIN 导轨上;既可以水平安装,也可以垂直安装,安装时始终将 CPU 和电源模块安装在左侧或底部。

有关 CTH300 系列 PLC 系统的详细安装和连接要求,请参见《CTH300-H 系列可编程逻辑控制器用户手册》和《CTH300-C 系列运动控制器系统手册》。

手册下载地址: http://www.co-trust.com/Download/index.html

在安装和拆卸 CTH300 系列 PLC 及其相关设备时,必须预先采取适当的安全措施并且确认 CTH300 系列 PLC 的供电被切断。

警告

试图在带电情况下安装或拆卸 CTH300 系列 PLC 及其相关设备有可能导致电击或者设备误动作。在安装和拆卸 CTH300 系列 PLC 及其相关设备时,如果未切断所有电源,有可能造成死亡或严重的人身伤害和设备损坏。

在更换或安装 CTH300 系列 PLC 时,要确定使用了正确或等同的模块。在更换 CTH300 系列 PLC 时,除了要使用相同的模块外,还要确保安装的方向和位置是正确的。

注意

- 如果您安装了不正确的模块, CTH300 系列 PLC 的程序可能会产生错误的功能。
- 如果未能使用相同的模块按照相同的方向和顺序替换 CTH300 系列 PLC,有可能导致死亡或者严重的人身伤害和设备损坏。

3 功能介绍

本章介绍 CTH300 系列高速计数器模块和高速脉冲输出模块搭配 C 系列 PLC 和 H 系列 PLC 使用时的具体功能。

3.1 高速计数模块功能

3.1.1 CTH300-H 系列高速计数器模块功能

CTH300-H系列PLC高速计数模块支持库指令HSC_300_LIB,下面介绍该库的指令说明。

设置计数器指令

函数名: HSC_300

功能: 配置计数器参数。

HSC_300 指令的参数说明

1100_500 1日 全日 多							
参数名	输入输出 属性	参数描述	类型	数值范围	备注		
MOD_ADR	IN	模块地址 BIT0~BIT3: 槽号 BIT4~BIT7: 机架号	вуте		Rackx (0~3) 的 y (3~10) 槽号上的模块 例如:16 为第 1 个机架 的 6 号模块。		
CH_ADR	IN	通道 0: HSC0; 1: HSC1	BYTE	0~1			
CTRL	IN	控制字	BYTE		见下表		
PV	IN	预设值	DINT				
CV	IN	当前值	DINT				
STA	OUT	返回状态	BYTE	0~255	0: OK 1: 参数错 2: 访问模块出错		

提示

MOD_ADR 模块地址说明了机架号和槽号的取值范围,该参数在多条 HSC 库指令中通用,因此相关设置都是一样。

示例

下图两个 HSC 挂在第二个中继的第 5 和第 6 个模块位置,而 MOD_ADR 是要看硬件组态中的模块所在的机架号以及对应的槽号(16#16 和 16#17),而不是 16#15 和 16#16。

控制字(R/W)

	7	6	5	4	3	2	1	0
ſ	hsc_en	hsc_cv_update	hsc_pv_update	hsc_dir_update	hsc_dir	quad	_rate	reset_level

reset_level: 复位电平, 1--高电平复位, 0--低电平复位

quad_rate[1:0]: 正交计数选择,00--4x 倍数,01--2x 倍数,10--1x 倍数

hsc_dir: 计数方向, 0--减计数, 1--增计数

hsc_dir_update: 计数方向更新, 0--不更新, 1--更新 hsc_pv_update: 预设值更新, 0--不更新, 1--更新 hsc_cv_update: 当前值更新, 0--不更新, 1--更新

hsc_en: 计数使能, 0--不使能, 1--使能

设置模式指令

函数名: HSC_SETMODE

功能: 设置计数器模式

HSC_SETMODE 指令的参数说明

参数名	输入输 出属性	参数描述	类型	数值 范围	备注
MOD_ADR	IN	模块地址 BIT0~BIT3: 槽号 BIT4~BIT7: 机架号	ВҮТЕ		Rackx (0~3) 的 y (3~10) 槽号上的模块 例如: 16 为第 1 个机架的 6 号模块。
CH_ADR	IN	通道	BYTE	0~1	
MODE	IN	计数模式	ВҮТЕ		Bit0~Bit3: HSC 计数模式 (见下表) Bit4: Z信号锁存功能, 0: 锁存, 1: 不锁存 Bit5: Z信号清零功能, 0: 清零, 1: 不清零 Bit6: 预留 Bit7: 锁存值清零 0: 无 效, 1: 有效
STA	OUT	返回状态	BYTE	0~255	0: OK 1: 参数错 2: 访问模块出错

计数器模式说明

模式	描述	输入			软件控制
	HSC0	A0	В0	Z0	INT
	HSC1	A1	B1	Z1	IINI
0	日本中省十百岁生的	时钟			
1	- 具有内部方向控制的 - - 单相计数器 -	时钟		重设	
2		时钟		重设	启动 (外部同步)
3	- 具有外部方向控制的 · 单相计数器	时钟	方向		
4		时钟	方向	重设	
5		时钟	方向	重设	启动 (外部同步)
6	具有2个时钟输入的	向上时钟	向下时钟		
7		向上时钟	向下时钟	重设	
8	- 双相计数器	向上时钟	向下时钟	重设	启动 (外部同步)
9	A/B 相正交计数器	时钟 A	时钟 B		
10		时钟 A	时钟 B	重设	
11		时钟 A	时钟 B	重设	启动(外部同步)

注意: 如果选择计数器模式 2/5/8/11, 需通过 INT 控制启动信号才能开始计数。

获取当前计数值指令

函数名: HSC_GETCV

功能: 获取当前计数值。

HSC_GETCV 指令的参数说明

参数名	输入输 出属性	参数描述	类型	数值范围	备注
MOD_ADR	IN	模块地址 BIT0~BIT3: 槽号 BIT4~BIT7: 机架号	вүте		Rackx (0~3) 的 y (3~10) 槽号上的 模块 例如: 16 为第 1 个 机架的 6 号模块。
CH_ADR	IN	通道	BYTE	0~1	
CV	OUT	当前计数值	DINT		当前计数值
STA	OUT	返回状态	BYTE	0~255	0: OK 1: 参数错 2: 访问模块出错

获取当前计数状态指令

函数名: HSC_GETSTA

功能: 获取当前计数状态。

HSC_GETSTA 指令的参数说明

参数名	输入输出 属性	参数描述	类型	数值范围	备注
MOD_ADR	IN	模块地址 BIT0~BIT3:槽号 BIT4~BIT7:机架号	ВҮТЕ		Rackx (0~3) 的 y (3~10) 槽号上的模块 例如: 16 为第 1 个机架 的 6 号模块。
CH_ADR	IN	通道	BYTE	0~1	
HSC_STA	OUT	计数器状态	ВУТЕ		Bit0~Bit3: 当前模式 Bit4: 预留 Bit5: HSC0当前计数方 向位: 1=增计数 Bit6=1: 当前值等于预 设值位 Bit7=1: 当前值大于预 设值位
STA	OUT	返回状态	BYTE	0~255	0: OK 1: 参数错 2: 访问模块出错

获取当前速度指令

函数名: HSC_GETSPEED

功能: 获取当前速度。

HSC_GETSPEED 指令的参数说明

参数名	输入输出 属性	参数描述	类型	数值范围	备注
MOD_ADR	IN	模块地址 BIT0~BIT3: 槽号 BIT4~BIT7: 机架号	BYTE		Rackx (0~3) 的 y (3~10) 槽号上的模 块 例如: 16 为第 1 个 机架的 6 号模块。
CH_ADR	IN	通道	BYTE	0~1	
SPEED	OUT	当前速度	DWORD		Hz
STA	OUT	返回状态	BYTE	0~255	0: OK 1: 参数错 2: 访问模块出错

获取当前锁存值指令

函数名: HSC_GETLOCK

功能: 获取当前锁存值。

HSC_GETLOCK 指令的参数说明

参数名	输入输出 属性	参数描述	类型	数值范围	备注
MOD_ADR	IN	模块地址 BIT0~BIT3: 槽号 BIT4~BIT7: 机架号	вуте		Rackx (0~3) 的 y (3~10) 槽号上的模 块 例如: 16 为第 1 个 机架的 6 号模块。
CH_ADR	IN	通道	BYTE	0~1	
LOCKDATA	OUT	当前锁存值	DINT		当前锁存值
STA	OUT	返回状态	BYTE	0~255	0: OK 1: 参数错 2: 访问模块出错

清除锁存值指令

函数名: HSC_CLEARLOCK

功能:清除锁存值。

HSC_CLEARLOCK 指令的参数说明

参数名	输入输出 属性	参数描述	类型	数值范 围	备注
MOD_ADR	IN	模块地址 BIT0~BIT3: 槽号 BIT4~BIT7: 机架号	вуте		Rackx(0~3)的 y(3~10) 槽号上的模块 例如: 16 为第 1 个机架 的 6 号模块。
CH_ADR	IN	通道	BYTE	0~1	
STA	OUT	返回状态	BYTE	0~255	0: OK 1: 参数错 2: 访问模块出错

3.1.2 CTH300-C 系列高速计数器模块功能

CTH300-C 系列 PLC 高速计数模块支持库指令 (HSC_LIB)

该指令库中的各指令描述参考如下说明。

1、设置计数器指令

函数名: HSC_300

功能: 设置计数器

参数说明

参数名	输入输出属性	参数描述	类型	数值范围	备注
MOD_ID	IN	模块地址	DWORD		模块映射字节中
MOD_ID	IIN	医灰地址	DWORD		的 Module Id
CH_ID	IN	通道	BYTE	0~1	
CTRL	IN	控制字	BYTE		详情见下表
PV	IN	预设值	DWORD		
CV	IN	当前值	DWORD		
CTA	OUT	注目作子	BYTE	0.055	0: OK, 其它: 访
STA	OUT	返回状态	DILE	0~255	问模块出错

控制字(R/W)

7	6	5	4	3	2	1	0
hsc_en	hsc_cv_update	hsc_pv_update	hsc_dir_update	hsc_dir	quad	_rate	reset_level

reset_level: 复位电平, 1-高电平复位, 0-低电平复位

f quad_rate[1:0]: 正交计数选择,00-4x 倍数,01-2x 倍速,10-1x 倍速

hsc_dir: 计数方向, 0-减计数, 1-增计数

hsc_dir_update: 计数方向更新,0-不更新,1-更新 hsc_pv_update: 预设值更新,0-不更新,1-更新 hsc_cv_update: 当前值更新,0-不更新,1-更新

hsc_en: 计数使能, 0-不使能, 1-使能

2、设置计数器模式

函数名: HSC_SETMODE

功能:设置计数器模式。

参数说明

参数名	输入输出属性	参数描述	类型	数值范围	备注
MOD ID	IN	模块地址	DWORD		模块映射字节中
IVIOD_ID	IIN	医灰地址	DWOKD		的 Module ID
CH_ID	IN	通道	BYTE	0~1	
					Bit0~Bit3: HSC
					计数模式 (模式描
					述见下表)
MODE	IN	控制字	BYTE		Bit4: Z 信号锁存
WIODE	IIN	1工山土	DITE		功能, 0: 锁存, 1:
					不锁存
					Bit5: Z信号清零
					功能, 0: 清零, 1:

					不清零
					Bit6: 预留
					Bit7: 锁存值清零
					0: 无效, 1: 有效
CTA	OUT	注回小子	DVTF	0.255	0: OK, 其它: 访
STA	OUT	返回状态	BYTE	0~255	问模块出错

HSC 计数模式

模式	描述		输入		软件控制
	HSC0	A0	В0	Z0	INT
	HSC1	A1	B1	Z1	IINI
0	具有内部方向控制的单	时钟			
1	相计数器	时钟		重设	
2	们以数值	时钟		重设	启动(外部同步)
3	具有外部方向控制的单	时钟	方向		
4	相计数器	时钟	方向	重设	
5	们以致的	时钟	方向	重设	启动(外部同步)
6	具有 2 个时钟输入的双	向上时钟	向下时钟		
7	相计数器	向上时钟	向下时钟	重设	
8	相互数益	向上时钟	向下时钟	重设	启动(外部同步)
9	A/B 相正交计数器	时钟 A	时钟 B		
10		时钟 A	时钟 B	重设	
11		时钟 A	时钟 B	重设	启动(外部同步)

注意:如果选择计数器模式 2/5/8/11,需通过 INT 控制启动信号才能开始计数。 HSC 模式举例:

模式 3/4/5

当您使用模式 6/7/8 时,如果增时钟输入的上升沿与减时钟输入的上升沿之间时间间隔小于 0.3 微秒,高速计数器会把这些事件当作同时发生,如果出现这种情况,当前值不变,计数方向指示不变。只要增时钟的上升沿与减时钟输入的上升沿之间时间间隔大于 0.3 µ s,高速计数器分别 捕捉每个事件。在以上两种情况下都不会产生错误,计数器保持正确的当前值。

模式 9/10/11 操作实例 (一倍速正交模式)

模式 9/10/11 操作实例 (四倍速正交模式)

3、获取当前计数值

函数名: HSC_GETCV

HSC_GETCV_0

HSC_GETCV

MOD_ID CV

CH_ID STA

功能: 获取当前计数值

参数说明

参数名	输入输出属性	参数描述	类型	数值范围	备注		
MOD ID	IN	模块地址	DWORD		模块映射字节中		
MOD_ID	IIN	模块地址 DWORD		1天外地址 DWORD			的 Module ID
CH_ID	IN	通道	BYTE	0~1			
CV	OUT	当前计数值	DWORD		当前计数值		
CT A	OUT	15 回 化 大	BYTE	0.055	0: OK, 其它:		
STA	OUT	返回状态	DILE	0~255	访问模块出错		

4、获取当前计数状态

函数名: HSC_GETSTA HSC_GETSTA_0

HSC_GETSTA

MOD_ID HSC_STA

CH_ID STA

功能: 获取当前计状态

参数说明

参数名	输入输出属性	参数描述	类型	数值范围	备注
MOD_ID	IN	模块地址	DWORD		模块映射字节中的
MOD_ID	IIN	医坏地址	טאטאט		Module Id
CH_ID	IN	通道	BYTE	0~1	
					Bit0~Bit3: 当前模式
					Bit4: 预留
					Bit5: HSC0当前计
HSC STA	OUT	计数器状态	BYTE		数方向位: 1=增计数
HSC_STA	001	月剱命仍心	DIIC		Bit6=1: 当前值等于
					预设值位
					Bit7=1: 当前值大于
					预设值位
STA	OUT	返回状态	BYTE	0~255	0: OK, 其它: 访问
SIA	001		סווב	0~255	模块出错

5、获取当前速度

函数名: HSC_GETSPEED

功能: 获取当前速度

参数说明:

参数名	输入输出属性	参数描述	类型	数值范围	备注			
MOD_ID	IN	模块地址	DWODD		模块映射字节中的			
	IIN	医坏地坦	DWORD	DWORD	DWOND	DWORD		Module ID
CH_ID	IN	通道	BYTE	0~1				
SPEED	OUT	当前速度	DWORD		Hz			
QTA	OUT	返回状态	BYTE	0.255	0: OK, 其它: 访问			
STA	OUT	巡 四 小 心	DILE	0~255	模块出错			

6、获取当前锁存值

函数名: HSC_GETLOCK

HSC_GETLOCK_0

功能: 获取当前计数值

参数说明:

参数名	输入输出属性	参数描述	类型	数值范围	备注
MOD ID	IN	模块地址	DWORD		模块映射字节中的
MOD_ID	IIN	医坏地坦.	DWORD		Module Id
CH_ID	IN	通道	BYTE	0~1	
LOCK	OUT	当前锁存值	DWORD		当前锁存值
STA	OUT	注目作子	BYTE	0~255	0: OK, 其它: 访问
SIA	OUT	返回状态	DIIE	0~255	模块出错

7、清除锁存值

函数名: HSC_CLEARLOCK

HSC_CLEARLOCK_O

功能:清除锁存值。

参数说明:

参数名	输入输出属性	参数描述	类型	数值范围	备注
MOD ID	IN	模块地址	DWORD		模块映射字节中的
IVIOD_ID	IIN	医妖地址	DWORD		Module Id
CH_ID	IN	通道	BYTE	0~1	
CT A	OUT	注回作子	BYTE	0.255	0: OK, 其它: 访问
STA	OUT	返回状态	DIIE	0~255	模块出错

3.2 高速脉冲输出模块功能

3.2.1 CTH300-H 系列高速脉冲输出模块功能

HSP-04 脉冲输出模块与 Magicworks PLC 中的脉冲输出指令库 Hsp_libv1.4 配套使用,包含以下控制指令:

指令名称	指令功能
MC_INIT_DIR	配置电机的方向指令
MC_PTP_R	单轴相对运动指令
MC_PTP_A	单轴绝对位置指令
MC_SPEED_CTRL	速度控制指令
MC_SET_POS	设置当前绝对位置
MC_READPOS	读取当前绝对坐标
MC_SET_MODE	设置输出模式指令

单轴相对运动指令

函数名: MC_PTP_R

功能:用作单轴点对点控制(单轴定长驱动)。

调用一次可输出固定脉冲,通过最大、最小速度和加减速时间的设定,输出的脉冲在启动时会逐渐的加速到最大的速度,当脉冲数快要跑完时,脉冲的频率会自动减下来,以防止在启动或停止时的机器的惯性太大而引起振动或卡死。

参数说明

参数名	输入输 出属性	参数描述	类型	数值范围	备注
MOD_ADR	IN	模块地址	Byte	高 4 位 0~3 低 4 位 3~10	Bit4~Bit7: 机架号 Bit3~Bit0: 槽号
E_STOP	IN	紧急停止位。 1:有效 0:无效	Bool	0/1	1、只有 Run==1 与 E_Stop==0 时 才能运行。 2、当 E_STOP 为 1 时, RUN 内部复 位。
AXIS_NO	IN	设置轴号	Byte	0~3	该参数在运行过 程中不能修改。

MIN_SPEE D MAX_SPE	IN	最小速度,即启动时或停止时的速度。单位: HZ 最大速度,即运行中的最	Dword	100~4000000	最小速度的设定 要小于最大速度。 此参数在运行过 程中可以修改。 单轴最大速度设 为 500K,差分最
ED		大速度。单位: HZ 加速/减速时间。			大速度 4M
TA	IN	单位: ms	Dword	0~10000	程中可以修改
SET_POS	IN	输出的脉冲数,分正负。 正脉冲数表示沿X轴的正 方向,负脉冲数表示沿着 X 轴的负方向。	Dint	-2147483648 ~ +2147483647	该参数在运行过 程中可设值 大子 已输出员后输出员 那次会员的一个人。 一个人。 一个人。 一个人。 一个人。 一个人。 一个人。 一个人。
RUN	IN/OU T	运行使能位。 1:有效 0:无效	Bool	0/1	1、只有 RUN ==1 与 E_STOP ==0 时才能运行。 2、当运行完成后, RUN 内部复位。 3、当 E_STOP 为 1 时,RUN 内部复位。 4. 当指令处于运行状态时,设 RUN为 0,则实现软停功能。
STATUS	OUT	输出状态字节: 7 6 5 4 3 2 1 0 Bit0: 参数配置错误标志 1—参数配置错误 0—参数配置正常 Bit1: 运行标志 1—正在运行,该指令正在输出脉冲,且指令未执行完。 0—不运行,因公共资源被其他指令占用,所以指令还没得以运行;或者指令已经运行完毕。	Byte	0~255	Bit0: 1、只对轴参数和 TA,MOD_ADR 配 置错误进行判断; 2、MIN_SPEED/ MAX_SPEED 等 参数不作报错,会 自动设置成一个 最接近的合理值。

		Bit2:完成标志 1—完成,指令执行完毕。 0—未完成,指令未执行或指令正在执行中但未完成。 Bit3:忙标志 1—忙标志有效,该轴正在被其它指令占用。 0—忙标志无效,指令正在执行或此执行已完成。 Bit4:模块状态。 1—模块访问出错。 0—模块访问没有出错。			
		0一模块访问没有出错。 Bit6:被其它指令中止			
ACT_POS	OUT	当前的相对坐标或本指 令已输出的脉冲数。	Dint	-2147483648 ~ +2147483647	
ACT_SPE ED	OUT	当前实际运行速度。	Dword	100~4000000	

提示

MOD_ADR 模块地址说明了机架号和槽号的取值范围,该参数在多条 HSP 库指令中通用,因此相关设置都是一样。

示例

下图 HSP 挂在第二个中继的第 6 个模块位置,而 MOD_ADR 是要看硬件组态中的模块所在的 机架号以及对应的槽号(16#18),而不是 16#17。

单轴绝对运动指令

函数名: MC_PTP_A

MC_PTP_A
EN

MOD_ADR STATUS
E_STOP ACT_POS
AXIS_NO ACT_SP^
MIN_SP^
MAX_SP^
TA
SET_POS
RUN

1、功能:

用作单轴点对点控制(非定长,而是定点)。调用一次可在原脉冲数基础上输出脉冲至指定脉冲数,通过最大、最小速度和加减速时间的设定,输出的脉冲在启动时会逐渐的加速到最大的速度,当脉冲数快要跑完时,脉冲的频率会自动减下来,以防止在启动或停止时的机器的惯性太大而引起振动或卡死。

2、参数说明:

参数名	输入输 出属性	参数描述	类型	数值范围	备注
MOD_ADR	IN	模块地址	Byte	高 4 位 0~3 低 4 位 3~10	Bit4~Bit7:机架号 Bit3~Bit0:槽号
E_STOP	IN	紧急停止位。 1:有效 0:无效	Bool	0/1	1、只有 Run ==1 与 E_Stop ==0 时才能运行。 2、当 E_STOP 为 1 时,RUN 内部 复位。
AXIS_NO	IN	设置轴号	Byte	0~3	该参数在运行过 程中不能修改。
MIN_SPEE D	IN	最小速度,即启动时或停 止时的速度。单位: HZ	Dword	100~4000000	最小速度的设定 要小于最大速度。 此参数在运行过
MAX_SPE ED	IN	最大速度,即运行中的最 大速度。单位: HZ	Dword	100~4000000	程中可以修改。 单轴最大速度设 为 500K,差分最 大速度 4M。
TA	IN	加速/减速时间。 单位: ms	Dword	0~10000	该参数在运行过 程中可以修改
SET_POS	IN	输出的脉冲数,分正负。 正脉冲数表示沿 X 轴的 正方向,负脉冲数表示沿 着 X 轴的负方向。	Dint	-2147483648 ~ +2147483647	该参数在运行过程中可以修改。 当新设定值大于已输出的脉冲数, 现么最后输出的脉冲数, 那么最后输出的 脉冲会以新设定值为准;当新设定值为于已输出脉

					冲数,那么会马上 停止脉冲输出。
RUN	IN/OUT	运行使能位。 1: 有效 0: 无效	Bool	0/1	1、只有 RUN ==1 与 E_STOP ==0 时才能运行 2、当运行完成后, RUN 内部复位。 3、当 E_STOP 为 1 时,RUN 内部 复位。 4、当指令处于运 行状态时,设 RUN 为 0,则实 现软停功能。
STATUS	OUT	输出状态字节: 7 6 5 4 3 2 1 0 Bit0: 参数配置错误 0—参数配置错误常 Bit1: 查询证据 指令表达 1—正出	Byte	0~255	BitO: 1、只对轴参数和 TA,MOD_ADR 配置错误进行判 断; 2、MIN_SPEED/ MAX_SPEED 等 参数不作报错,会自动设置成一个 最接近的合理值。
ACT_POS	OUT	当前的绝对坐标	Dint	-2147483648~ +2147483647	
ACT_SPE ED	OUT	当前实际运行速度。	Dword	100~4000000	

速度控制指令

函数名: MC_SPEED_CTL

1、功能:

控制单轴输出脉冲的频率,可任意时候改变输出脉冲的频率(速度)。当接收到软停止命令时,会自动减速停止。当收到紧急停止命令时,会马上停止脉冲输出,不经过减速。

2、参数说明:

参数名	输入输 出属性	参数描述	类型	数值范围	备注
MOD_AD	IN	模块地址	Byte	高 4 位 0~3 低 4 位 3~10	Bit4~Bit7: 机架号 Bit3~Bit0: 槽号
RUN	IN	运行使能位。 1:有效, 0:无效。	Bool	0/1	1、只有 RUN ==1 与 E_Stop ==0 与 SOFT_STOP ==0 时才能运行。 2、当运行完成后, RUN 内部复位。
E_STOP	IN	紧急停止位。 1:有效,0:无效。 当收到有效紧急停止命令 后,输出脉冲会马上停止, 不经过减速。	Bool	0/1	只有 RUN==1 与 E_Stop ==0 与 Soft_Stop==0 时 才能运行。
SOFT_ST OP	IN	软停止位。 1:有效,0:无效。 当收到有效软停止命令时, 输出脉冲会减速停止。	Bool	0/1	只有 RUN ==1 与 E_Stop==0 与 SOFT_STOP==0 时才能运行。
DIR	IN	脉冲的方向位	Bool	0/1	该参数在运行过程中可以修改。与 226H 一样,不考虑加减速。
AXIS_NO	IN	设置轴号	Byte	0~3	该参数在运行过 程中不能修改。
MIN_SPE ED	IN	最小速度,即启动时或停止时的速度。单位: HZ	Dword	0~4000000	设定速度为 0 时, 没有脉冲输出;设
SET_SPE	IN	设定速度,在收到停止命令	Dword	0~4000000	定最小速度非0且

ED		前,输出脉冲会加速或减速到此速度。			小于 100 时,模块 默认为 100;若设 定速度小于最小 速度,模块默认将 最小速度的值修 改为设定速度的 值。 2、SET_SPEED 在运行过程中可 修改。 MIN_SPEED 在 运行过程中可修 改。
ТА	IN	加速时间,从最小速度到设定速度的加速时间。单位: 毫秒	Dword	0~10000	该参数在运行过
TD	IN	减速时间,从设定速度到最小速度的减速时间。单位: 毫秒	Dword	0~10000	程中可以修改。
STATUS	OUT	输出状态字节: 7 6 5 4 3 2 1 0 Bit0: 参数配置错误标志 1—参数配置证常 Bit1: 运行标志 1—正在运行,指令正在输出脉冲,且指令未执资源令还,因公共资源令占用,所以指令占用,所以指令方。 0—不运行,因为所以指令方完。 Bit2: 完成标志 1—完成,指令执行完毕。 O—未完成,指令执行完毕。 O—未完成,指令未执行完毕。 O—未完成,指令正在执行中但未完成。 Bit3: 忙标志 1—忙标志有效,该轴正在被其它指令占用。 O—忙标志无效,指令正在执行已完成。 Bit5~Bit6: 预留 Bit7: 指令通信状态标志 1—通信超时; 0—无超时	ВҮТЕ	0~255	BitO: 只对轴参数和 TA/TD,MOD_AD R配置错误进行判 断; 2、 MIN_SPEED/SE T_SPEED 等参数 不作报错,会自动 设置成一个最接 近的合理值。
ACT_SPE ED	OUT	当前速度(频率)输出。	Dword	100~400000	该值可能跟实际 值会有一点偏差。

设置当前绝对坐标

函数名: MC_SET_POS

1、功能:

设置当前绝对坐标,本指令只能在轴停止时使用。

在 PTP-A 或者 PTP-R 指令运行过程中,调用此指令脉冲输出急停,设置当前绝对坐标;在 Speed 指令运行过程中,调用此指令,设置当前绝对坐标,但 Speed 指令仍继续运行。

2、参数:

参数名	输入输 出属性	参数描述	类型	数值范围	备注
MOD_ADR	IN	模块地址	BYTE	高 4 位 0~3 低 4 位 3~10	Bit4~Bit7: 机架号 Bit3~Bit0: 槽号
AXIS_NO	IN	设置轴号	BYTE	0~3	
POSA	IN	设定的坐标		-2147483648~ +2147483647	-
Status	OUT	状态	BYTE	0~255	0: OK 1: 参数出错 2: 访问模块出错

获取当前绝对位置指令

函数名: MC_READPOS

1、功能: 读取当前位置的绝对坐标值指令。

2、参数:

参数名	输入输 出属性	参数描述	类型	数值范围	备注		
MOD_AD	IN	模块地址	Byte	高 4 位 0~3	Bit4~Bit7: 机架号		
R		人のこと	Dyto	低 4 位 3~10	Bit3~Bit0: 槽号		
AVIC NO	IN	沙黑地 里	Duto	0.2	该参数在运行过程中		
AXIS_NO	IIN	设置轴号	Byte	0~3	不能修改。		
					0:OK		
Status	OUT	状态	Byte	Byte	Byte	0~255	1:参数出错
					2:访问模块出错		
POS	OUT	少贵的极对从	Dint	-2147483648~			
PU3	001	当前的绝对坐标	Dint	+2147483647			

设置电机方向指令

函数名: MC_INIT_DIR

1、功能:配置电机的方向。

提示

执行此指令只在 CPU 上电第一个扫描周期执行一次。

2、参数:

参数名	输入输 出属性	参数描述	类型	数值范围	备注
MOD_A	IN	 模块地址	Byte	高 4 位 0~3	Bit4~Bit7: 机架号
DR	IIN	[Буге	低 4 位 3~10	Bit3~Bit0: 槽号
AXIS_N	IN	设置轴号	Byte	0.3	该参数在运行过程
0	IIN	以且和与	Буге	0~3	中不能修改。
DIR	IN	配置方向信号为正向时的 有效电平 DIR 为 1 时,设置对应方 向轴输出"1"时为电机正转 DIR 为 0 时,设置对应方 向轴输出"0"时为电机反转	Bool	0~1	默认值: 0, 即默认 方向轴输出为"1", 为电机正转。
Status	OUT	状态	Byte	0~255	0: OK 1: 参数出错 2: 访问模块出错

设置轴输出模式

函数名: MC_SET_MODE

1、功能:设置轴输出模式

2、参数:

参数名	输入输 出属性	参数描述	类型	数值范围	备注
MOD_AD R	IN	模块地址	Byte	高 4 位 0~3 低 4 位 3~10	Bit4~Bit7: 机架号 Bit3~Bit0: 槽号
AXIS_NO	IN	设置轴号	Byte	0~3	

MODE	IN	设定的模式	Byte	0, 1, 2	0: 方向 + 脉冲 1: 正负脉冲 2: AB 相模式
Status	OUT	状态	Byte	0~255	0: OK 1: 参数出错 2: 访问模块出错

3.2.2 CTH300-C 系列高速脉冲输出模块功能

高速脉冲输出模块可用于设置 HSP 轴的当前坐标,支持指令 HSP_SetPos。

函数名: HSP_SetPos

功能:设置 HSP 轴的当前坐标

参数说明:

参数名	输入输出属性	参数描述	类型	数值范围	备注
ModuleId	IN	模块地址	DWORD		模块映射字节中的
ivioduleid	IIN				Module Id
AxisNo	IN	轴号	BYTE	0~3	
Execute	IN	上升沿执行	BOOL		
Pos	IN	当前位置	DINT		设置的当前坐标
Err	OUT	是否出错	BOOL		0: 无措, 1: 出错
Done	OUT	是否完成	BOOL		0: OK, 1: 未完成

<备注> 如需使用该指令,请在 Codesys 软件中安装 Co_Trust_HSP_Lib 库文件。

4 应用

4.1 高速计数器模块使用

本节主要介绍 CTH300 系列 PLC 的高速计数模块对伺服电机编码器反馈的脉冲信号进行计数和 测速的组态过程。完成本节后,您将会熟悉高速计数模块的基本功能。

4.1.1 在 CTH300-H 系列 PLC 中应用

示例网络连接

具体操作步骤如下:

步骤 1:接线

打开 H35-00 和电源模块 PWR-02 的前面板,为它们接线。

步骤 2: 连接电缆

参考上图的网络连接,按以下操作步骤连接各设备:

- 1) 使用编程电缆(PLC 编程电缆+编程转接线)连接 PC 与 H35-00
- 2) H35-00 与高速计数模块通过总线进行连接
- 3) 使用编程电缆连接 PG/PC 与 E10 驱动器
- 4) 使用编码器电缆连接 E10 驱动器与电机
- 5) 为高速计数模块和 E10 驱动器接线

步骤 3: 运行伺服驱动系统

通过设置 E10 伺服驱动器参数使电机开始正常运转,具体操作参考《E10 系列交流伺服驱动器使用说明书》。手册下载地址: http://www.co-trust.com/Download/index.html

步骤 4: 设置 PLC 通信

在 MagicWorks PLC 中新建一个工程,在该工程中添加 H35-00 站点,随后即可参考如下步骤对 H35-00 进行通讯设置。

1) 设置 PG/PC 接口

选择菜单项"工具"→"设置 PG/PC 接口"打开如下窗口,在"设置 PG/PC 接口"窗口中选择使用接口"PC/PPI Cable (PPI)",然后点击"属性"按钮打开属性对话框,即可设置通讯波特率、串口,最后点击"确定"按钮完成 PG/PC 接口设置。

2) 与 H35-00 建立通讯

在工作窗口双击通信图标 ■ 弹出如下通信窗口,双击通信对话框中"双击刷新"进行搜索,连接成功的 H35-00 即会显示在通信对话框中。

步骤 5: 在 MagicWorks PLC 中进行硬件组态

在 MagicWorks PLC 项目视图中单击选中 H35-00 站点,然后在其右侧工作窗口双击硬件组态图标量, 讲入硬件组态界面。

1) 在硬件组态界面,通过设备目录将电源、CPU、高速计数模块添加到机架上,组态完成的工程如下图所示:

2) 配置高速计数模块(HSC-02) 属性

在机架中双击模块 HSC-02 打开其配置窗口,在选项卡"高速计数器"中为计数通道 HSC0 配置相关参数(本例只使用了一个通道,故仅配置 HSC0):

然后勾选需要中断使能的通道(本例只使用了一个通道,故仅使能 HSC0):

步骤 6: 在 MagicWorks PLC 中进行程序编辑

1)添加高速计数模块配置库 hsc_300_lib

在 MagicWorks PLC 主界面的项目窗口中打开程序块对话框,然后在程序对话框的指令树中右键选择"库"->"添加/删除库",然后在"添加/删除库"对话框中点击"添加"按钮选择添加库文件Labec_300_lib,添加成功的库文件则显示在指令树中:

2) 为 hsc_300_lib 库分配库存储区

在 MagicWorks PLC 主界面选择菜单项"文件"->"库存储区",然后在弹出的对话框中填写存储区地址:

3) 使用 hsc_300_lib 库指令进行编程

由于已经在硬件组态中对 HSC-02 模块进行配置,则可以直接使用指令 (HSC_GETCV、HSC_GETSPEED、HSC_STA) 读取该模块的速度、位置及状态等信息。

<备注> 若未配置 HSC-02 模块,则可以通过指令 HSC_300 配置。

步骤 7: 调试与监控程序

1)编译、下载程序

选择菜单项"文件"→"保存"以保存当前组态,然后选择菜单项"PLC"→"编译"对当前工程进行编译;若编译成功,则可以进行下载操作,在主界面选择菜单项"PLC"→"下载"将程序块和硬件组态从编程设备下载到 H35-00 中。

2) 调试程序

程序下载成功后,将 PLC 置于运行模式,然后点击监控按钮开始进行程序状态监控:

通过监控以上指令可以获得电机的当前速度(频率)及当前位置。

4.1.2 在 CTH300-C 系列 PLC 中应用

示例网络连接

具体操作步骤如下:

步骤 1:接线

打开 C37-00 和电源模块 PWR-02 的前面板,为它们接线。

步骤 2: 连接电缆

参考上图的网络连接,按以下操作步骤连接各设备:

- 1) 使用标准网线连接 PC 与 C37-00
- 2) C37-00 与高速计数模块通过总线进行连接
- 3) 使用标准网线连接 PC 与 H1A 驱动器
- 4) 使用编码器电缆连接 H1A 驱动器与电机
- 5) 为高速计数模块和 H1A 驱动器接线(H1A 伺服驱动器 X2 端子的的 A+、A-、B+、B-分别与 HSC-02 的 A0+、A0-、B0+、B0-——对应接线)

步骤 3: 新建 PLC 工程

在 CODESYS 中新建一个标准工程,选择 PLC 设备 CODESYS Control arm CTH3 C37-000S1 并自定义工程名称。

步骤 4: 在 CODESYS 中进行组态

在新建工程的设备目录中右键点击"Co-Trust LocalBus"选择"添加设备",然后在弹出的对话框中将供应商选择为"Co-Trust",选择"专用设备 Interface 8 Slot",最后点击"添加设备"按钮即可添加该设备,添加成功的设备将显示在 Co-Trust LocalBus 下方,最后选择添加成功的 INT_00 并右键选择"添加设备",选择添加 HSC-02 设备。

<备注> 双击设备 HSC-02 打开其属性对话框可以配置该模块的模式、控制字等参数,若在此处配置后,即无需使用指令 HSC_300、HSC_SETMODE 指令。

步骤 5: 运行驱动系统

通过设置 H1A 伺服驱动器参数使电机开始正常运转,具体操作参考《H1A 系列交流伺服驱动器使用说明书》,手册下载地址: http://www.co-trust.com/Download/index.html

步骤 6: 添加库文件 hsc lib1

通过菜单项"工具"->"安装库"选择添加库文件 MSC_Lib1.2.0.2。

库文件添加成功后会弹出一个提示框,提示添加成功。然后将添加成功的库添加到库管理器中,请参考如下操作:

- 1) 从设备目录中打开库管理器: PLC-> Application->库管理器
- 2) 然后在库管理器界面点击"Add library"添加库文件"Co-Trust HSC Library"

步骤 7: 使用 hsc_lib1 库进行编程

HSC-02 模块的库文件已经成功添加,可以直接通过指令读取该模块的速度、位置及状态等信息。

<备注> 若在 HSC-02 模块属性对话框中配置了控制字、模式等参数,则无需调用 HSC_300、HSC SETMODE 指令。

步骤 8: 调试与监控程序

- 1)选择菜单项"在线"→"登录…"使应用程序与 C37-00 建立起连接,并进入在线状态;然后,选择菜单项"调试"→"启动"使 C37-00 中的应用程序开始运行。
- 2) 调试程序

通过程序中的 HSC GETCV、HSC GETSPEED 等指令读取伺服电机的当前位置、速度等值。

4.2 高速脉冲输出模块使用

本节介绍 CTH300 系列 PLC 的高速脉冲输出模块用法,其系统连接和通信连接方式与高速计数模块相同,该模块主要用于控制运动轴。

4.2.1 在 CTH300-H 系列 PLC 中应用

高速脉冲输出模块与脉冲输出指令库 Hsp_libv1.4 配套使用,用户可根据具体需要调用单独的脉冲输出指令,下面以单轴相对运动指令和速度控制指令为例介绍具体用法:

单轴相对运动指令

速度控制指令

4.2.2 在 CTH300-C 系列 PLC 中应用

1、在 CODESYS 中进行组态

在设备目录中右键点击"Co-Trust LocalBus"选择"添加设备",然后在弹出的对话框中选择供应商"Co-Trust",选择"专用设备 Interface 8 Slot",最后点击"添加设备"按钮即可添加该设备,添加成功的设备将显示在 Co-Trust LocalBus 下方,选择添加成功的 INT_00 并右键选择"添加设备",选择 HSP-04 设备。

<备注> 双击设备 HSP-04 打开其属性对话框可以查看该模块的内部配置、I/O 映射、状态和常规信息。

2、添加 SM Drive Virtual 虚轴

在设备目录中右键点击 SoftMotion General Axis Pool 选择"添加设备",然后在弹出的对话框中选择供应商"3S-Smart Software Solutions GmbH",选择"虚拟驱动"下的"SM_Drive_Virtual"后单击"添加设备"即可添加一个虚轴。

<备注> 右键单击相应轴,选择"属性"即可在弹出的对话框中更改虚轴名称、访问控制权限等信息。

3、定义虚轴参数

双击各个虚轴, 定义相应的虚轴参数, 如下图所示:

4、定义映射关系

在 HSP-04 模块的映射参数里定义映射关系,将 HSP 轴的动作位置、设定速度和设定位置三个 参数映射成全局变量。

全局变量表如下所示:

参数映射如下所示:

₹量	映射	通道	地址	类型	单位	描述
*		Module Id		DWORD		
*		Module State	%IB312	BYTE		
🦖		Module Err Num	%ID79	DWORD		
··· 🌄 Application.HSP_ActPos0	³ø	dwActPosition of Axis0	%ID80	DINT		
Application.HSP_ActPos1	"	dwActPosition of Axis1	%ID81	DINT		
Application.HSP_ActPos2	"	dwActPosition of Axis2	%ID82	DINT		
Application.HSP_ActPos3	"	dwActPosition of Axis3	%ID83	DINT		
Application.HSP_SetPos0	"	Set Position of Axis0	₩QD19	DINT		
Application.HSP_SetPos1	~	Set Position of Axis1	%QD20	DINT		
Application.HSP_SetPos2	"	Set Position of Axis2	%QD21	DINT		
Application.HSP_SetPos3	~	Set Position of Axis3	%QD22	DINT		
Application.HSP_SetVel0	~	Set Velocity of Axis0	%QD23	DWORD		
Application.HSP_SetVel1	~	Set Velocity of Axis1	%QD24	DWORD		
No Application.HSP_SetVel2	~	Set Velocity of Axis2	%QD25	DWORD		
Application.HSP_SetVel3	~	Set Velocity of Axis3	%QD26	DWORD		

5 添加库文件 Co_Trust_HSP_Lib

通过菜单项"工具"->"安装库"选择添加库文件 ● Co-Trust_HSP_V1.3.0.library 库文件添加成功后会弹出一个提示框,提示添加成功。然后将添加成功的库添加到库管理器中,请参考如下操作:

- 1) 从设备目录中打开库管理器: PLC-> Application-> 库管理器;
- 2) 然后在库管理器界面点击"Add library"添加库文件"Co-Trust HSP Library"。

6 在程序中调用

使用轴之前或虚轴坐标超出 32 位范围时,都需使用触发 MC_SetPosition 函数和 HSP_SetPos 将 HSP 轴和虚轴坐标系统一。

```
2 abs_setpos SMO_0

Over_range

SMO_1

SMO_1
```

```
MC SetPosition 0
                                                         HSP SetPos 4
            MC SetPosition
                                                  Co_Trust_Hsp_Lib.HSP_SetPos
      1 — EN
                         ENO
                                                EN
                                                                           ENO
     Z0 <del>↔</del>Axis
                                        %ID77 — ModuleId
                        Done
                                                                          Err
  SM0_0 - Execute
                                           0 — AxisNo
                                                                         Done - done1
                       Busy
ZeroPose - Position
                      Error
                                        SM0_0 -Execute
      0 -Mode
                    ErrorID
                                     ZeroPose — Pos
```

7 将虚轴的设定坐标和设定速度转化后赋值给 HSP 轴参数

```
done1
                                                                                         ready
-
                                                                                          -((s))
                                                                                         SM0_0
                                                                                           (R)
readv
                                    REAL_TO_DINT
┨╟
                Z0.fSetPosition
                                                    -HSP SetPos0
                                    REAL_TO_DINT
                Z0.fSetVelocity
                                                    vel0
                           ABS
                        EN
                              ENO
                                   -HSP_SetVel0
```

8 调用 MC_Power, MC_MoveAdditive 等函数来控制轴

<注意> 调用轴指令的任务和 **HSP-04** 模块的总线循环应设为相同,如果总线循环快于轴指令周期,轴可能报错。

附录

订货信息

产品描述	订货号	
HSC-02高速计数模块,2路差分/单端信号输入	CTH3 HSC-020S1	
HSP-04高速脉冲输出模块,支持4路5~24VDC 单端500kHz 或5VDC 差分4MHz	CTH3 HSP-040S1	

深圳市合信自动化技术有限公司

SHENZHEN CO-TRUST TECHNOLOGY CO.,LTD.

深圳市南山区西丽镇茶光路南侧深圳集成电路设计应用产业园 209、210服务热线: 400-700-4858

E-mail: sales@co-trust.com
网址: http://www.co-trust.com

内容如有变动, 恕不另行通知 版权所有, 禁止未经授权的拷贝和抄袭