简介:

MDH系列可编程智能伺服驱动器是一款通用、高性能、结构紧奏的全数字伺服驱动器,最大功率可达5KW,集可编程运动控制、PLC、伺服驱动功能于一体。

主要应用于直线(DDL)、力矩(DDR)、音圈、有刷、无刷 伺服电机的位置、速度、转矩控制。

它能以独立可编程控制(Stand-alone)、分布式网络控制、或外部控制三种模式运行,可支持增量编码器、模拟量正余弦(Sin/Cos)编码器、绝对值编码器、旋转变压器、数字霍尔反馈。

I/O数字

*15inputs,6outputs

1/0 模拟

- *2,16-bit inputs
- *1,12-bit input
- *1,12-bit output

供电电压

- *逻辑供电电压18-30VDC
- *功率供电电压 100-240VAC

尺寸: 201*140*98

控制模式

控制直线(DDL)、力矩(DDR)、音圈、有刷、无刷伺服电机

- *Indexer,Point-to-Point,PVT
- *电子凸轮,电子齿轮
- *位置,速度,力矩

运行模式(命令&通讯)

独立可编程控制(Stand-alone)

- *简单直观的编程工具
- *32个可编程运动序列
- *可编程优先级,由数字输入或32个寄存器选择与执行运动序列

- *通过RS232/CAN通讯访问32个寄存器
- *可编程上电自动运行程序
- *可编程运行错误响应类型

分布式网络控制

- *CANopenDS-402 (CAN2.0B, 1MBit/s)
- *RS-232 ASCII

外部控制

- *步进脉冲(脉冲/方向,CW/CCW,单端输入,最大速率2M)
- *模拟量±10V: 位置/速度/力矩(差分输入,2路16位分辨率)
- *PWM:速度/力矩(1-100KHZ,最小脉宽220ns)
- *编码器A/B(最大速率2M line/s,4倍频后8M)

反馈

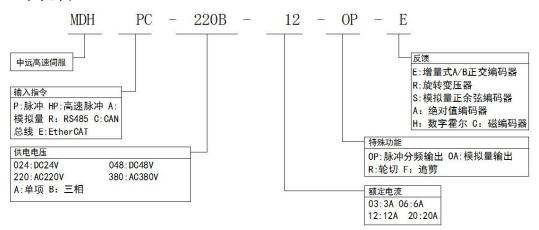
- *数字A/B正交编码器(-E,最大速率5M line/s)
- *绝对值编码器(-A,(SSI,EnDat,Absolute A,Biss(B&C)))
- *数字霍尔(-H(U/V/W,120度电气相位差))
- *旋转变压器(-R)可选
- *模拟SIN/COS编码器(-S)可选
- *辅助编码器输入/输出(全闭环控制/-OP)

保护

*过流、过压、欠压、短路、接地、过温、I2t、控制错误等

主要应用

高速贴片机 精密点胶机 固晶机 激光切割机 机器人 数控机床 医疗设备 半导体及组装设备 印刷 包装 纺织航空 航天等要求高速 高精度 高动态响应 低噪音 中大型自动化设备。


配置与调整软件

基于Windows操作系统电机与传感器参数配置 自动定相自动或手动调整PID参数试运行 示波器实时分析评估 错误报警记录 参数状态 监控 运行序列编程 灵活快捷 简单易用

数字控制

数字控制环	电流 速度 位置,100%数字环控制:使		
	用第二编码器输入的双位置环控制		
采样频率	电流环: 16KHZ(62.5us); 速度/位置环:		
(时间)	4KHZ (250us)		
通信	正弦磁场定向控制或者从 Hall 到无刷		
進行	电机的梯形控制		
调制	带中心加权的空间矢量 PWM 调制		
宽带	电流环一般为 3KHZ, 随参数调整与负		
见市	载电感有所变化		
HV 补偿	改变总线电压(HV)不影响宽带		
最小负载电	200uH 线电感		
感	2000円 线电芯		

驱动器型号说明

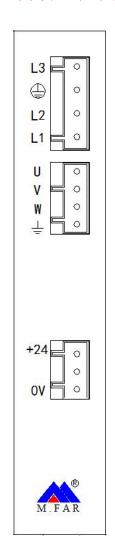
驱动器选型

驱动器型号	供电电压(AC)	电流 IC(A)	峰值电流 IP(A)	编码器类型
MDHPX-XXX-03-XX	100-230V	3A	9A	增量式\绝对值\正余弦
MDHPX-XXX-06-XX	100-230V	6A	18A	增量式\绝对值\正余弦
MDHPX-XXX-12-XX	100-230V	12A	36A	增量式\绝对值\正余弦
MDHPX-XXX-20-XX	100-230V	20A	40A	增量式\绝对值\正余弦

备注: 1: 驱动器的供电电压必须大于或等于电机的额定电压

2: 驱动器的额定电流必须大于或等于电机的额定电流

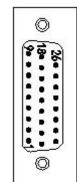
驱动器接线端子定义

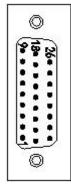

警告:输入电源、马达输出、制动电阻为高压接口 注意安全!!

电源输入接口		
定义	脚位	
L3	4	
地	3	
L2	2	
L1	1	

马达输出接口		
定义	脚位	
U	4	
V	3	
W	2	
地	1	

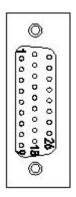
+24V&电机抱闸		
定义	脚位	
+24VDC	3	
0V	1	

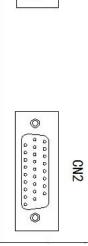

注意:此处需要24V输入



COM RS-232 ASCII

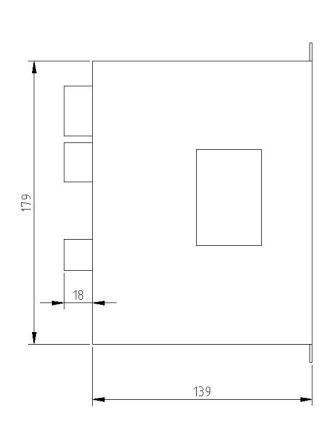
CN1 控制信号

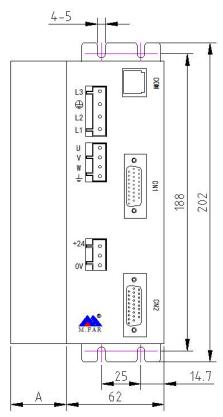

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
1	外壳地	10	[IN6] HS	19	Signal Gnd
2	[AIN1+]	11	[AIN2+]	20	+5Vdc Out
3	[AIN1-]	12	[AIN2-]	21	Multi Enc/x2
4	[IN1] GP	13	Multi Enc/s2	22	Multi Enc x2
5	[IN2] GP	14	Multi Enc s2	23	Multi Enc/B2
6	[IN3]	15	Signal Gnd	24	Multi Enc B2
7	[IN4] GP	16	[OUT1]	25	Multi Enc/A2
8	[IN5] GP	17	[OUT2]	26	Multi Enc A2
9	[AOUT]	18	[OUT3]		



CN2 编码器反馈端子

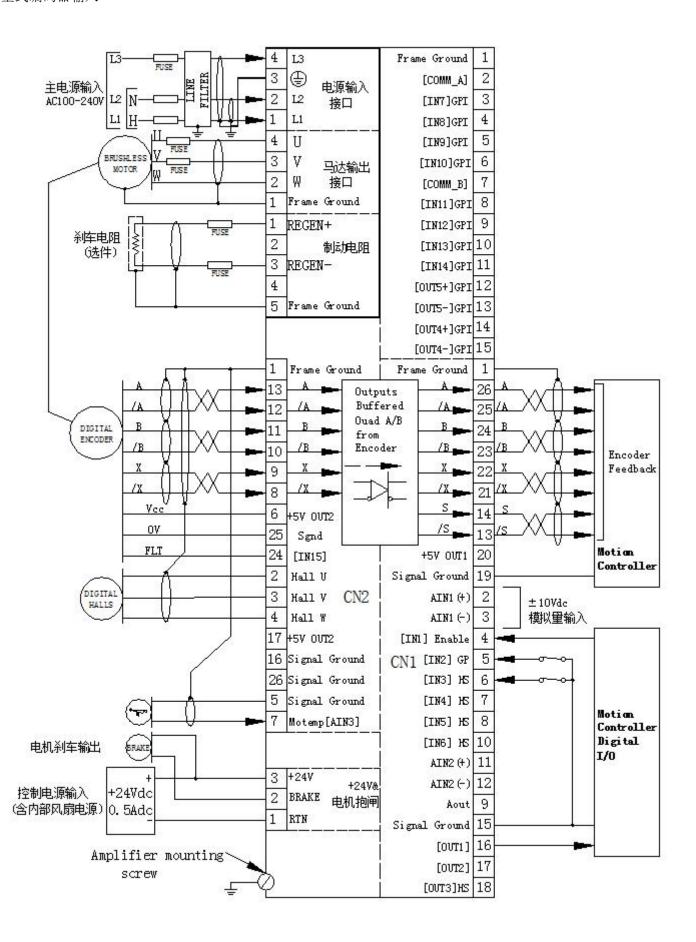
PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
1	外壳地	10	Enc/B1	19	Sin1(+)
2	Hall U	11	Enc B1	20	Cos1(-)
3	Hall V	12	Enc/A1	21	Cos1(+)
4	Hall W	13	Enc A1	22	Index1(-)
5	Signal Gnd	14	Enc/S1	23	Index1(+)
6	+5Vdc Out	15	Enc S1	24	[IN15]
7	[AIM3]Motemp	16	Signal Gnd	25	Signal Gnd
8	Enc/X1	17	+5Vdc Out	26	Signal Gnd
9	Enc X1	18	Sin1(-)		

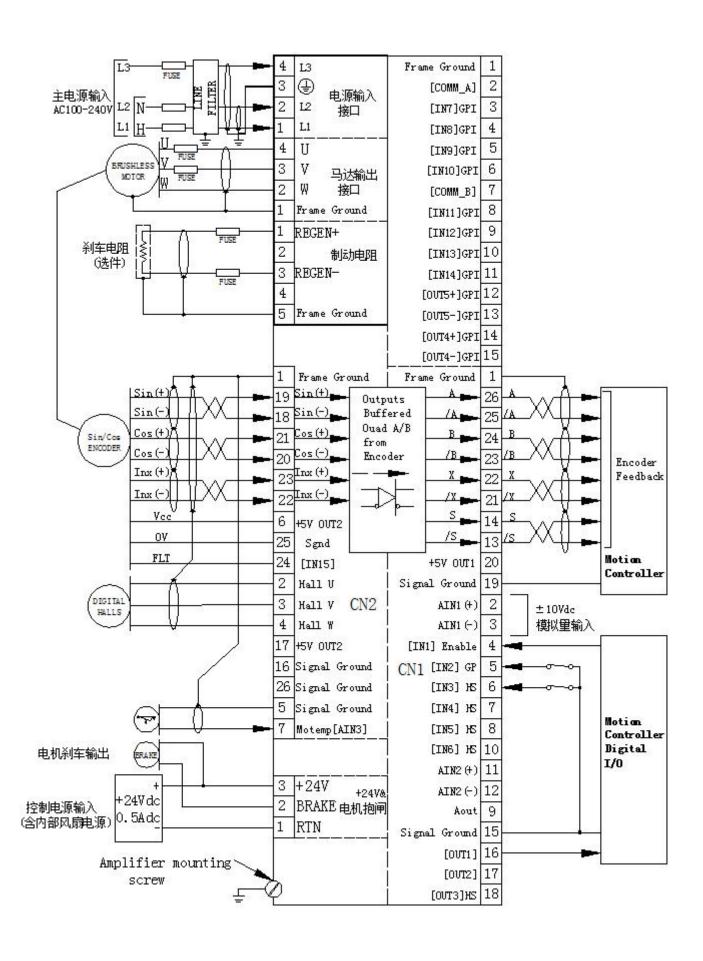




COM

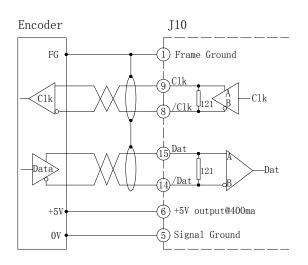
SN1


安装尺寸图

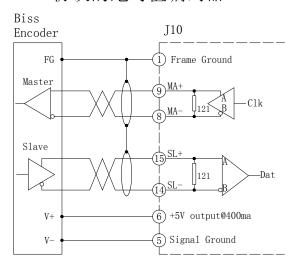


驱动器接口图

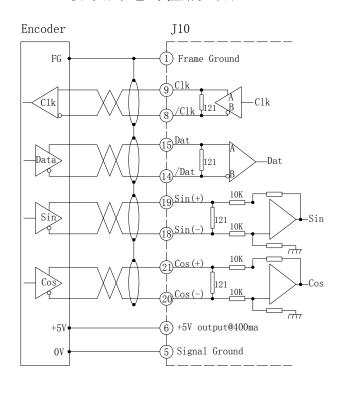
*增量式编码器输入

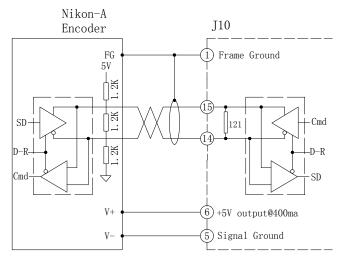


*正余弦编码器输入



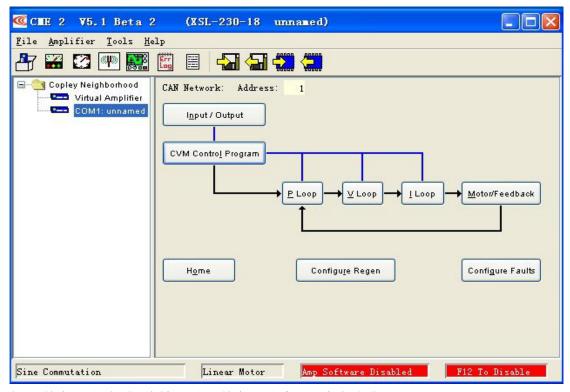
*绝对值编码器输入


SSI协议的绝对值编码器


BISS协议的绝对值编码器

ENDAT协议的绝对值编码器

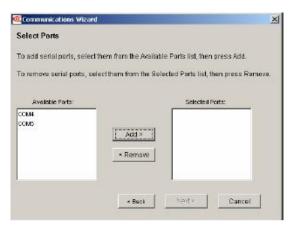
尼康绝对值编码器


调试软件用户向导

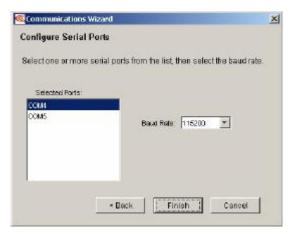
- 1. 软件的安装、启动及向导
- 1. 1 安装软件
- 1. 2 启动软件
- 1. 双击电脑桌面上的快捷方式图标,启动软件,出现如图所示窗口:

提示: 当 软件运行时, 键盘上的 F12 键可用做驱动器去使能用途。

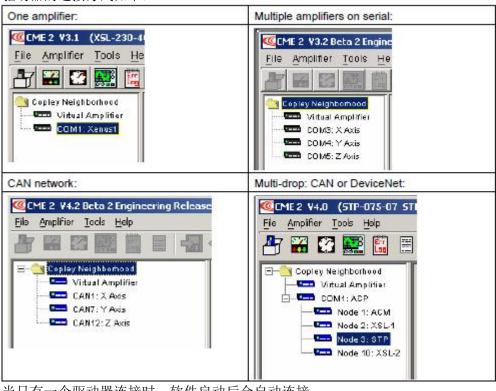
2. 点击上图中的"OK"后,如通讯端口已经被设置,可出现类似下图窗口:



如果"基本设置"选项还未被配置,"基本配置"窗口便会自动弹出。

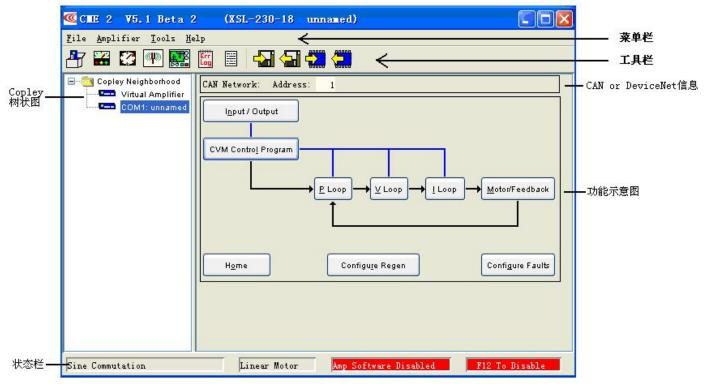

- 1. 3 串口设置
- 1. 如果串口或者 CAN 口还没有被选择,"通讯向导"窗口便会自动弹出,如下图所示:

- 2. 主界面已经打开,可以选择 "Tools" 菜单下的"Communication Wizard"。
- 3. 选择"Serial Ports"然后点击"Next",打开"Communication Wizard Select Ports/Serial Ports"窗口,如下图所示:



- 4. 从可用的串口中选择用于与驱动器通讯的 COM 口。
 - 在可用的串口中选中后,点击"Add",将要用的 COM 口添加即可;也可在所选的 COM 口中,点击"Remove"将其移除。
- 5. 点击"Next"保存选项,并打开通讯向导的串口设置窗口,如下图所示:

- 6. 配置相应的 COM 口,设置其波特率。
- 7. 点击"Finish"保存选项。
- 1.4 连接到驱动器


驱动器的连接方式如下:

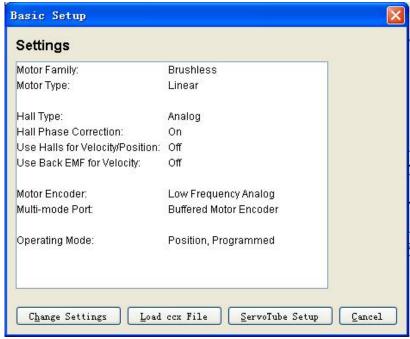
当只有一个驱动器连接时,软件启动后会自动连接。

8

1.5 软件向导

1. 工具拦概览

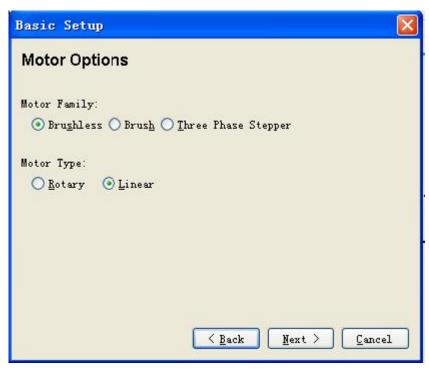
图标	名称	描述
3	Basic Setup	打开基本配置窗口
S 72	Control Panel	打开控制面板窗口
	Auto Phase	打开自动换相工具
& # Ø	Auto Tune	打开直线电机自动调试工具
250.0	Scope	打开示波器工具
Err	Error Log	显示错误日志
	Amplifier Properties	显示驱动器属性
4	Save amplifier data to disk	将驱动器 RAM 中的内容以文件形式保存到磁盘
	Restore amplifier data from disk	从磁盘中读取文件到驱动器的 RAM 中
	Save amplifier data to flash	将驱动器 RAM 中的内容保存到驱动器 Flash 中
2000	Restore amplifier data from disk	从驱动器 Flash 中读取内容到驱动器的 RAM 中


2. 主菜单概览

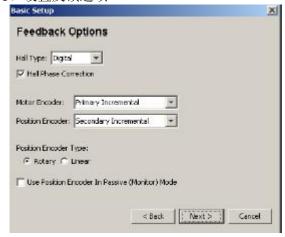
菜单	选项	描述
	Save amplifier data	将驱动器RAM 中的内容保存到磁盘
File	Restore amplifier data	从磁盘中读取文件到驱动器的RAM 中
FIIE	Restore CVM control program	从磁盘中读取CVM 程序文件到驱动器中
	Restore CAM tables	从磁盘中读取CAM 表格文件到驱动器中
	Exit	关闭
	Basic Setup	打开基本配置窗口
	Control Panel	打开控制面板窗口
Amplifian	Auto Phase	打开自动换相工具
Amplifier	Scope	打开示波器工具
	Error Log	显示错误日志
	Amplifier properties	显示驱动器属性
	Network configuration	打开CAN 或者DeviceNet 配置界面

	Rename	给驱动器命名
	Auto Tune	打开直线电机自动调试工具
	Gain Scheduling	打开增益比例窗口
	Communications Wizard	设置通讯
	Communications Log	打开通讯日志
	Download Firmware	将存于磁盘中的固件下载到驱动器中
T1-	Download CPLD Program	将存于磁盘中的PLD 代码下载到驱动器中
Tools	Manual Phase	打开手动调相工具
	View Scope Files	打开轨迹显示器窗口
	I/O Lines States	打开显示 I/O 状态窗口
	CME2 Lock/Unlock	打开CME2 锁定/解锁功能窗口
	ASCII Command Line	打开ASCII 码命令窗口
	CME2 User Guide	打开用户向导手册
	All Documents	打开 CME2 安装后自动生成的相关文件夹
Help	Downloads Web Page	打开默认的Copley 网页
	Software Web Page	11 万 秋 K 的 Copiey M 从
	View Release Notes	打开最新版本的 CME2 发行日志
	About	显示 CME2 的版本

2. 基本配置

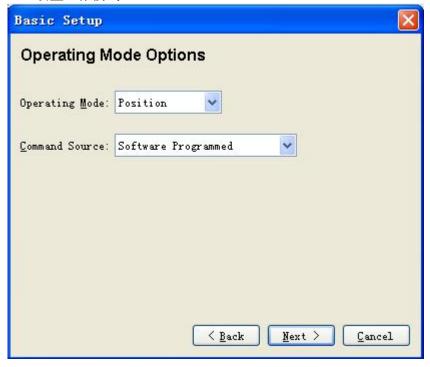

点击打开"基本配置"窗口,如下图所示:

浏览当前的基本配置情况


选择: a. 假如需要,点击 "Change Settings"来改变当前的设置;

- b. 假如你有一个准备好的".ccx"文件,可直接点击"Load ccx File"将文件直接下载到驱动器中;
- c. 假如要配置 Servo Tube 电机,直接点击 "Servo Tube Setup";
- d. 假如要接受当前显示的设置,直接选择 "Cancel"。
- 2. 1 改变基本设置
- 1. 点击 "Change Settings"来改变驱动器的设置,不同的设置选项因不同的驱动器而改变。
- 2. 设置电机选项

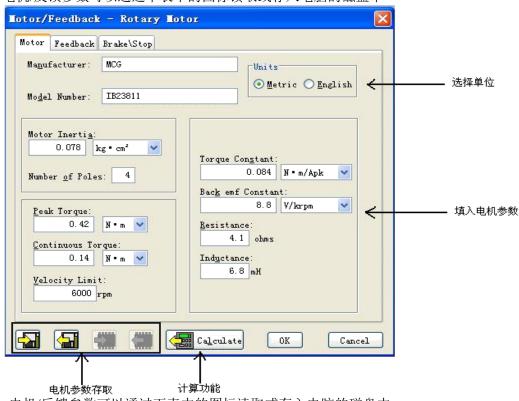
设置	描述
Motor Family	选择电机种类: 无刷, 有刷, 或者三相步进
	(选择三相步进电机时,驱动器工作在开环的步进模式)
Motor Type	选择电机类型: 旋转 或者 线性


3. 设置反馈选项

设置	描述		
Hall Type	选择Hall 类型:没有,数字,或者模拟(模拟 Hall 专用于 Copley ServoTube		
	电机)		
Hall Phase Correction	假如选择此项,将使能位于 Hall 开关和基于相位角的编码器信号之间的错误检		
	测功能		
Motor Encoder	选择电机编码器的类型和来源:		
	• None: 没有电机编码器		
	Primary Incremental: 位于主编码器接口的增量式编码器		
	Secondary Incremental: 位于第二编码器接口的增量式编码器		
	• Analog: 位于主编码器接口的模拟量编码器		
	• Low Frequency Analog: 位于主编码器接口的 Copley ServoTube 电机的编码器		
	• Resolver (仅针对 Resolver 版本的驱动器): 位于主编码器接口的旋转变压器		
Position Encoder	选择位置(负载)编码器的来源:		
	• None: 没有位置编码器		
	Primary Incremental: 位于主编码器接口的增量式编码器		
	Secondary Incremental: 位于第二编码器接口的增量式编码器		
	• Analog: 位于主编码器接口的模拟量编码器		

Position Encoder Type	选择位置(负载)编码器的类型:		
	• Rotary: 旋转编码器		
	• Linear: 线性编码器		
Use Position Encoder in	当此选项被选择时,位置(负载)编码器的信号仅被作为位置编码器信号的监		
Passive(monitor) Mode	控,不参与驱动器内部位置环的运算和控制。		
仅适用于步进驱动器			
Motor Encoder	选择编码器的类型:		
	• None: 没有电机编码器		
	• Primary Incremental: 位于主编码器接口的增量式编码器		
Run in Servo Mode	(仅在带编码器时)驱动器工作在闭环,伺服模式控制步进电机		
Encoder Enable Correction	(仅在带编码器时)驱动器工作在步进模式,编码器主要用于纠正位置错误		

4. 设置工作模式


设置	描述	
Operating Mode	选择操作模式: 电流, 速度, 或者位置	
Command Source	选择命令信号来源:	
	• Analog Command: 模拟电压(+/- 1 0V)做为命令信号输入	
	• PWM Command (仅用于电流和速度模式): 数字脉宽调制信号做	
	为命令信号输入	
	• Function Generator: 内部的函数发生器做为命令信号输入	
	• Software Programmed: 驱动器以 Copley Virtual Machine(CVM)或者	
	外部控制信号做为命令信号输入	
	• Camming: 驱动器运行在电子凸轮模式	
	Digital Input: 命令信号可在下面 Input Source 里选择	
	• CAN: 命令输入可通过 CAN 网络提供	
Input Source	选择 PWM 输入或者 Digital Input 时信号的输入:	
	• Single-ended Inputs: 命令信号通过驱动器的两个可设置的数字输入	
	口给定	
	• Multi mode Port: 命令信号通过驱动器的第二编码器通道(即 Multi	
	mode Port)的差分输入口给定	
	• Differential Input: 命令信号通过驱动器的差分输入给定	
5 坐配黑妃女选币后 占土 "Einigh	" 字式其未边罢	

5. 当配置好各选项后,点击"Finish"完成基本设置。

3. 电机/反馈参数配置

3. 1 电机/反馈参数窗口概览

电机/反馈参数可以通过下表中的图标读取或存入电脑的磁盘中

电机/反馈参数可以通过下表中的图标读取或存入电脑的磁盘中

图标	名称	描述	
	Save motor data to disk 将电机/反馈/刹车的设置以.ccm 文件的格式保存到磁盘中		
\	Restore motor data from disk 从电脑中读取.ccm 格式的文件到驱动器中		
	Save motor data to flash	将电机/反馈/刹车的设置保存到驱动器的 flash 中	
-	Restore motor data from flash	从 flash 中读取电机/反馈/刹车的设置	

3. 2 旋转电机参数设置

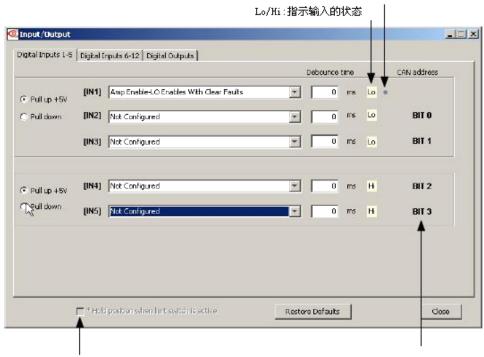
设置	描述
Manufacturer	电机生产商名称
Model Number	电机型号
Units	参数单位:英制 或 公制
Motor Inertia	电机惯量 用于计算初始的速度环调试参数。范围: 0.00001 到 4.294kg cm ² .默认值: 0.00001kg cm ²
Number of poles	(仅指无刷电机) 电机中的磁极数,用于电机的整定。范围:2到200默认值:4
Peak Torque	电机的峰值扭矩。 电机的峰值扭矩/力矩常数=电机的峰值电流限制。范围: 0.001 到 2100 Nm, 默认值: 0.0001 Nm。
Continuous Torque	电机的持续扭矩。 用来和力矩常数一起计算出持续电流。范围: 0.001 到1000Nm, 默认值: 0.0001 Nm。
Velocity Limit	电机的最大速度。用来计算速度环的速度和加减速的限制。范围取决于编码器的分辨率。
Torque Constant	与电机的输入电流和输出的扭矩相关。有时简称 Kt。范围: 0.001 到 1000Nm/Apk。默认值: 0.001Nm/Apk。

Back emf Constant	与电机的输入电压和输出的速度相关。有时简称 Ke。用于计算在当前给定的母线电压下可达到的最大的速度。范围: 0.01 到 21,000,000V/Krpm。默认值: 0.01V/Krpm。
Resistance	电机线到线之间的阻抗。用于计算初始的电流环的调试参数。范围: 0.01 到327Ohms。默认值: 0.01 Ohms
Inductance	电机线到线之间的感抗。用于计算初始的电流环的调试参数。范围:见驱动器硬件手册。
仅适用于步进驱动器	
Rated Torque	电机的额定工作力矩。最小值: 0.001 最大值: 1000
Rated Current	电机的额定持续电流。最小值: 0.001 最大值: 1000
Basic Step Angle	电机的步距角。最小值: 0.225 度 最大值: 2 2 .5 度 默认值: 1 .8 度
Microsteps/Rev	电机每转的步数。最小值: 4 最大值: 100,000,000 默认值: 4000
Full Steps/Rev	此值为只读值,可用于确认电机的步距是否与电机说明书上的一致

3.3 反馈参数,旋转电机

反馈类型	参数/动作
Incremental	在 "Motor Encoder Lines"或者 "Position Encoder Lines"区域内填入编码器的线数(参照编码器或者电机的手册)如 "Counts"区域所示,编码器的 Counts 数=编码器的线数×4 1000 mm 1000 counts
Analog	在 "Fundamental Lines区域内,填入编码器的基本线数(参照编码器或者电机的手册)如 "Fundamental Counts" 所示,编码器的基本 Counts 数=编码器的基本线数×4 可供选择的 Interpolation 可用来改变编码器的分辨率,Interpolate 后的分辨率 = Fundamental Counts×Interpolation 值
Resolver	通过改变 "Counts Per Rev"中的值来改变反馈的分辨率。
Halls	当驱动器设置为使用 Hall 做为速度和位置反馈时,可通过增加"Halls Count Multiplier"值来改变电机每转的 Counts 数。

3. 4 计算功能


- 1.点击 "Calculate" 计算并且显示设置。
- 2. 确认峰值电流限制,持续电流限制,和速度环速度限制。假如这些参数中的一个或多个看上去不合理,点击 "Cancel"并且检查: 峰值力矩(力),持续力矩(力),速度限制,和力矩(力),常数。假如必要的话修改它们。(请看旋转电机设置参数 或者 直线电机设置参数) 假如 Motor/Feedback 值正确但是峰值电流限制,持续电流限制,或者速度环速度限制值对于当前的应用并不是最优化的,在调试的过程中改变它们。
- 3. 点击 OK 将这些值下载到驱动器的 RAM 中。

注意: 当从一个文件中下载电机数据,假如文件中电机接线配置跟当前存在驱动器中的配置不匹配, CME 提示确认正确的配置。点击 Yes 选择配置文件,这些配置将被做为电机的相位部分进行测试。

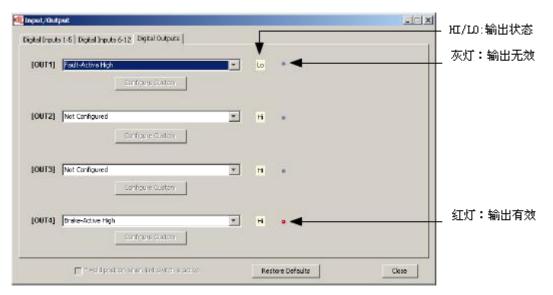
- 4. 点击 "Save to Flash"保存配置以防配置丢失
- 4. 数字输入/输出配置

- 需要的话,设置"Digital Inputs"。
- 需要的话,设置"Digital Outputs"。
- 点击 "Close",保存设置到驱动器的RAM中
- 在主界面上,点击 "Save to Flash" 保存配置以防配置丢失。
- 4. 1 数字输入
- 1. 娄 入界面概览

红灯:运行停止或输入有效,取决于输入的功能 灰灯:运行正常 无灯:没有配置

保持位置设置

表示输入用于CAN地址设置

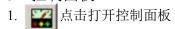

参数	描述
Pull up +5V	将一组输入上拉到内部的+5V
Pull Down	将一组输入下拉到内部的信号地
Debounce Time	指明在输入接收到一个新的状态之前保持原有状态的延迟时间。增大时间可以防止开关的 多次触发。 范围: 0 到 10,000ms。 这个延时并不影响输入被配置为PWM,脉冲加方向和差分输入控制信号。
In1-In12	为相应的输入选择功能。
*Hold position	在位置控制模式下,当一个或多个输入被配置为限位输入时有效。这一选项阻止当限位有效时电机运行。这一选项使用"Abort Deceleration Rate" 使电机停止。
limit switch is active	警告: 当驱动器工作在电流或者速度模式时,并且该选项被选择,限位有效时该功能无效。
Restore	恢复所有的输入和输出为出厂时设置。
Defaults	

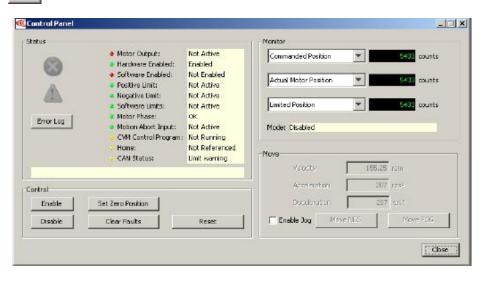
2. 数字输入的功能

输入功能	描述	
AMP Enable-LO Enables with clear faults	低电平输入将使能驱动器 任何边沿跳变将清除锁定的错误和输出	
AMP Enable- HI Enables with clear faults	高电平输入将使能驱动器 任何边沿跳变将清除锁定的错误和输出	
AMP Enable- LO Enables with reset	低电平输入将使能驱动器 上升沿将复位驱动器	
AMP Enable- HI Enables with reset	高电平输入将使能驱动器 下降沿将复位驱动器	
AMP Enable- LO Enables	低电平输入将使能驱动器	
AMP Enable- HI Enables	高电平输入将使能驱动器	
Not Configured	没有功能配置	
NEG Limit- HI Inhibits*	高电平使负限位有效	
NEG Limit- LO Inhibits*	低电平使负限位有效	
POS Limit- HI Inhibits*	高电平使正限位有效	
POS Limit- LO Inhibits*	低电平使正限位有效	
Reset on LO-HI Transition	上升沿将复位驱动器	
Reset on HI-LO Transition	下降沿将复位驱动器	
Motor Temp HI Disables	高电平将引发电机温度过高错误	
Motor Temp LO Disables	低电平将引发电机温度过高错误	
Home Switch Active HI	高电平表明原点有效	
Home Switch Active LO	低电平表明原点有效	
Motion Abort Active HI	高电平使电机运行停止。 驱动器仍保持使能	
Motion Abort Active LO	低电平使电机运行停止。 驱动器仍保持使能	
Hi Res Analog Devide Active HI	高电平使驱动器固件将模拟量输入信号除以8	
Hi Res Analog Devide Active LO	低电平使驱动器固件将模拟量输入信号除以8	
Hi Speed Position Capture on LO-HI Transition	输入的上升沿将捕捉当前位置	
Hi Speed Position Capture on HI-LO Transition	输入的下降沿将捕捉当前位置	
PWM Sync Input	PWM 同步输入(仅针对高速输入口)	

4. 2 数字输出

1. 数字输出界面概览


参数	描述	
Configure Custom	打开界面,显示数字输出设置。仅仅在功能配置为"Custom"时有效。	
Restore Defaults	所有输入和输出都恢复为出厂设置。	
Close	关闭界面,保存设置到驱动器的 RAM 中。	


2. 标准输出功能

标准输出功能描述如下:

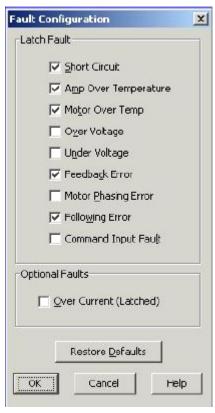
输出功能	描述	
Not Configured	没有功能。输出保持高电平	
Fault Active High	当一个或者多个错误发生时,输出为高电平	
Fault Active Low	当一个或者多个错误发生时,输出为低电平	
Brake Active High	输出高电平使刹车有效	
Brake Active Low	输出低电平使刹车有效	
PWM Sync Output(OUT1 only)	PWM 同步输出	
PWM Sync Output(OUT1 only) Custom Event	PWM 同步输出 见数字输出配置: Custom Event	
J 1 (J)		
Custom Event	见数字输出配置: Custom Event 见数字输出配置: Custom Trajectory Status	
Custom Event Custom Trajectory Status	见数字输出配置: Custom Event 见数字输出配置: Custom Trajectory Status	

5. 控制面板

2. 请看 Control Panel 概览以及详细描述:

- 状态以及信息指示
- 控制面板监控通道
- 控制功能
- Jog 模式

5. 1 Control Panel 概览



5. 2 状态指示和消息

Status 区域包括状态指示灯(如下所述)和一个消息窗口。任何一个红灯指示时运动将停止。

指示	描述	
Motor Output	PWM 输出状态, 当 PWM 输出无效的话将指示红色。	
Hard Enabled	硬件使能输入的状态。当一个或多个使能输入无效的时候指示红色。	
Software Enabled	软件使能的状态。当驱动器被软件去使能时指示红色。	
Positive Limit	正限位开关输入的状态。当正限位开关有效时显示红色。	
Negative Limit	负限位开关输入的状态。当负限位开关有效时显示红色。	
Software Limits	软件限位的状态。软件限位有效时显示红色。	
Motor Phase	指示电机相位错误。当电机相位错误发生时显示红色。	
Motion Abort Input	运动停止输入的状态。当输入有效时显示红色。	
CVM Control Program	m CVM 控制程序的状态。	
Home	指示电机是否完成回原点操作。	
CAN Status	CAN 总线的状态。当 CAN 警告发生时显示黄色,总线错误时指示红色。	
Gain Scheduling	指示"Gain Scheduling" 是否有效	
8	当错误发生时,错误指示变为红色。检查消息窗口关于最近发生的错误的详 细描述。错误和警告的历史请检查错误日志。	
1	当警告发生时,警告指示变为黄色。检查消息窗口关于最近发生的警告的详 细描述。错误和警告的历史请检查错误日志。	
Message Box	显示状态描述	

- 6. 驱动器错误
- 1. Configure Faults 点击 "Configure Faults"打开错误配置窗口。

- 2. 选择锁定错误,请见"错误参数配置"。
- 3. 点击"OK"保存设置到驱动器的 RAM。
- 4.
- 在主窗口上,点击"保存到 Falsh"快捷方式以防设置丢失。
- 6. 1 错误参数配置

通过在错误配置窗口的设置,以下任意一错误可以被锁定。请见"错误锁定注意事项"。注意:以下错误参数可能随驱动器不同而不同。

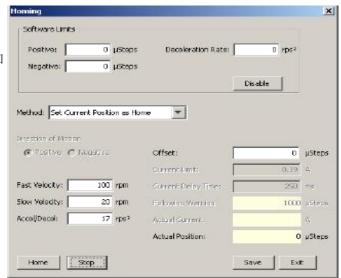
MG4E-MUH I LAHUT LA		
错误描述	在∞ 情况下错误发生	在 情况下错误被修复
*Amp OverTemperature	驱动器内部的温度超过了指定的温度	驱动器内部的温度下降到指定温度以下。
Motor Phasing Error	基于编码器的相位角度与 Hall的开关状态 不相符。这个错误仅发生在无刷电机被配置 为弦波整定时。在旋转变压器反馈或者 Hall 纠正功能被关闭时,该错误不会发生	基于编码器的相位角度与 Hall 的开关状态一致。
*Feedback Error	驱动器内部 5V 输出过流。旋转变压器或者模拟编码器没有接线或者 电平超出误差 范围。增量编码器的差分信号没有接线。	编码器的电源恢复到指定电压范围内。 反馈信号恢复到指定电平范围内。 差分信号连接完好。
*Motor Over Temp	电机过温开关状态改变指示过温错误。	温度开关恢复到正常状态。
Under Voltage	母线电压在指定的电压限制以下	母线电压恢复到指定的电压范围。
Over Voltage	母线电压超出指定的电压限制	母线电压恢复到指定的电压范围
*Following Error	超出用户设置的跟随误差	重新设置调整参数
*Short Circuit Detected	输出到输出,输出到地,内部PWM 桥错误。	短路现象被消除。

Command Input Lost	PWM 或者其它命令信号不存在	输入信号恢复
Over Current(Latched)	输出电流 I^2T 限制被超出	驱动器复位或者重新使能
*Latched by default		

- 6. 2 错误锁定注意事项
- 1. 清除非锁定错误
- 只要错误条件被修复, 无需操作员干预, 驱动器就可清除非锁定错误。
- 2. 清除锁定错误
- 只有当错误条件被修复后并且以下至少一项被执行时,一个锁定的错误才可被清除。
- 驱动器重新上电。
- 重新使能硬件使能输入,但使能必须被配置为: Enables with Clear Faults 或 Enables with Reset。
- 打开 CME2 Control Panel 点击 "Clear Faults" 或者 "Reset"。
- 通过串口或者 CANopen 网络来清除错误。
- 3. 例子: 非锁定 VS 锁定错误

例如,驱动器的温度到达了错误限制状态,驱动器报了此错误并且断掉了 PWM 输出。然后,驱动器的温度又恢复到正常的工作范围。假如"Amp Over Temperature"错误没有被锁定,驱动器的错误将被自动清除并且 PWM 输出被恢复。假如该错误被锁定了,错误仍然是有效的并且 PWM 输出也仍然无效,除非按照以上的说明去清除错误

7. 命令输入


点击打开命令输入设置窗口

- 2. 改变/确认在以下章节中描述的命令输入。
- •模拟命令设置
- •PWM 输入设置
- •数字位置输入设置
- •CAN 网络设置
- •软件编程输入设置

点击 Close 关闭窗口并且保存设置到驱动器的 RAM 中

8. 回原点

1. ______在主窗口上,点击 "Home"打开回原点设置窗口

2. 选择设置以下参数

参数	描述	
Software Limits: Positive	回完原点后用户自定义的位置行程限制。	
Software Limits: Negative		
Software Limits: Deceleration Rate	当到达软限位时电机停止时的减速度。	
Software Limits: Disable	通过将限制设置为 0 来使软限位无效。	
Method	回原点的方式。请见"回原点方式"。	
Direction of Motion	回原点时运行的初始化方向(正方向或者负方向)	
Fast Velocity	寻找限位或者原点开关时的速度。同样用于当运动到偏置位置时,或者运动到 旋转变压器或者 ServoTube 的索引信号。	
Slow Velocity	寻找开关信号边沿,增量或者模拟编码器索引信号,或者硬件限位时的速度。	
Accel / Decel	在回原点过程中使用的加速度或者减速度。	
Offset	找到参考信号后再运动一定的距离,设置实际位置为0,并将当前的位置作为原点。	
Current Limit	到达硬件限位时,驱动器输出回原点电流限制并持续设定的延迟时间。	
Current Delay Time		
Following Warning	显示设置的跟随报警界限。	
Actual Current	显示在回原点时作用给线圈的实际电流。	
Actual Position	显示电机轴的实际位置。	

- 3. 点击 "Home"开始执行回原点动作。点击 "Stop", 停止回原点动作。
- 4. 点击 "Save"保存设置到闪存。点击 "Exit"推出窗口。
- 5. 回原点方式
- 1) Set current position as home 当前位置是原点
- 2) Next Index 原点是运动方向找到的第一个索引信号(编码器原点信号)
- 3) Limit Switch 原点是限位开关的边沿
- 4) Limit Switch Out to Index 原点是限位开关边沿的反方向第一个索引信号
- 5) Hard Stop 原点是方向硬件限位 在伺服模式下,当回原点的电流限制持续输出设定的时间时表示到达硬件限位
- 6) Hard Stop Out to Index 原点是方向硬件限位反方向的第一个索引信号
- 7) Home Switch 原点是原点开关的边沿
- 8) Home Switch Out to Index 原点是原点开关边沿反方向的第一个索引信号
- 9) Home Switch In to Index 原点是原点开关边沿方向的第一个索引信号
- 10) Lower Home 原点是原点开关的负方向边沿
- 11) Upper Home 原点是原点开关的正方向边沿
- 12) Lower Home Outside Index 原点是原点开关负方向边沿负方向的第一个索引信号
- 13) Lower Home Inside Index 原点是原点开关负方向边沿的正方向第一个索引信号
- 14) Upper Home Outside Index 原点是原点开关正方向边沿的正方向第一个索引信号
- 15) Upper Home Inside Index 原点是原点开关正方向边沿的负方向第一个索引信号