SIEMENS

前言

安全说明	1
SINAMICS V-ASSISTANT	2
用户界面	3
任务导航	4

SINAMICS

SINAMICS V90 SINAMICS V-ASSISTANT 在线帮助

操作手册

法律资讯

警告提示系统

为了您的人身安全以及避免财产损失,必须注意本手册中的提示。人身安全的提示用一个警告三角表示,仅 与财产损失有关的提示不带警告三角。警告提示根据危险等级由高到低如下表示。

表示如果不采取相应的小心措施,将会导致死亡或者严重的人身伤害。

表示如果不采取相应的小心措施,可能导致死亡或者严重的人身伤害。

⚠办心

表示如果不采取相应的小心措施,可能导致轻微的人身伤害。

注意

表示如果不采取相应的小心措施,可能导致财产损失。

当出现多个危险等级的情况下,每次总是使用最高等级的警告提示。如果在某个警告提示中带有警告可能导 致人身伤害的警告三角,则可能在该警告提示中另外还附带有可能导致财产损失的警告。

合格的专业人员

本文件所属的产品/系统只允许由符合各项工作要求的**合格人员**进行操作。其操作必须遵照各自附带的文件说明,特别是其中的安全及警告提示。由于具备相关培训及经验,合格人员可以察觉本产品/系统的风险,并避免可能的危险。

按规定使用 Siemens 产品

请注意下列说明:

Siemens 产品只允许用于目录和相关技术文件中规定的使用情况。如果要使用其他公司的产品和组件,必须得到 Siemens 推荐和允许。正确的运输、储存、组装、装配、安装、调试、操作和维护是产品安全、正常运行的前提。必须保证允许的环境条件。必须注意相关文件中的提示。

商标

所有带有标记符号 @ 的都是西门子股份有限公司的注册商标。本印刷品中的其他符号可能是一些其他商标。 若第三方出于自身目的使用这些商标,将侵害其所有者的权利。

责任免除

我们已对印刷品中所述内容与硬件和软件的一致性作过检查。然而不排除存在偏差的可能性,因此我们不保 证印刷品中所述内容与硬件和软件完全一致。印刷品中的数据都按规定经过检测,必要的修正值包含在下一 版本中。

技术支持

国家	热线				
中国	+86 400 810 4288				
德国	+49 911 895 7222				
意大利	+39 (02) 24362000				
印度	+91 22 2760 0150				
土耳其	+90 (216) 4440747				
更多技术支持与服务信息:					
技术支持联系方式 (http://support.automation.siemens.com/CN/view/zh/16604999)					

目录

	前言		3
1	安全说明		9
	1.1 1.1.1 1.1.2	基本安全说明 一般安全说明 工业安全	9 9 10
2	SINAMICS	V-ASSISTANT	11
	2.1	SINAMICS V-ASSISTANT 操作环境	11
	2.2	系统配套表	12
3	用户界面…		15
	3.1	工作模式	15
	3.2	用户界面一概述	20
	3.3 3.3.1	菜单栏 茎单栏	21 21
	3.3.2	二 例之	21
	3.3.2.1	工程 -> 新建工程	22
	3.3.2.2	上程 -> 打开上程	22 23
	3.3.2.4	工程 -> 工程另存为	20 24
	3.3.2.5	工程 -> 打印	24
	3.3.2.6	工程 -> 语言	25
	3.3.2.7	上程 -> 退出	25
	3.3.3 3 3 3 1	编辑米平	25 25
	3.3.3.2	编辑 -> 复制	25
	3.3.3.3	编辑 -> 粘贴	26
	3.3.4	切换菜单	26
	3.3.4.1	切换 -> 离线	26
	3.3.4.2	切换 -> 在线	26
	3.3.5	工具菜单	27
	3.3.5.1	⊥具 -> 保存参数到 ROM	27
	3.3.5.2	⊥具 -> 里后 地 功 益	27
	3.3.3.3 3 3 5 1	上共 → 2 227	ע∠ ספ
	3.3.3.4 3.3.5.5	上宍 → 山/ 仅且 丁目 、 ト お 会 粉	0∠ ∩د
	336	⊥ 云 → ⊥ 秋 ジ 奴	30 21
	3361	Ⅲ均本十····································	31
	0.0.0.1		01

	3.3.6.2	帮助 -> 关于 SINAMICS V-ASSISTANT	. 31
	3.4	工具栏	. 31
	3.5	告警窗口	. 32
	3.6	功能键和快捷键	. 33
4	任务导航		. 35
	4.1	选择驱动	. 37
	4.1.1	选择驱动	. 38
	4.1.2	选择电机	. 40
	4.1.3	控制模式	. 41
	4.1.4	Jog	. 43
	4.2	参数设置	. 44
	4.2.1	设置电子齿轮比	. 45
	4.2.1.1	概述	. 45
	4.2.1.2	机械结构	. 46
	4.2.2	设置机械结构	. 48
	4.2.3	设置参数设定值	. 48
	4.2.3.1	扭矩设定值	. 49
	4.2.3.2	速度设定值	. 50
	4.2.3.3	位置设定值	. 53
	4.2.4	设置极限值	. 57
	4.2.4.1	扭矩限制	. 57
	4.2.4.2	速度限制	. 59
	4.2.5	配置输入/输出	. 60
	4.2.5.1	分配数字量输入	. 60
	4.2.5.2	分配数字量输出	. 61
	4.2.5.3	分配模拟量输出	. 62
	4.2.6	配置回零参数	. 62
	4.2.6.1	设置回参考点	. 63
	4.2.6.2	设置软限位	. 67
	4.2.7	设置编码器脉冲输出	. 69
	4.2.8	反向间隙补偿	. 69
	4.2.9	查看所有参数	. 70
	4.3	调试	. 73
	4.3.1	测试接口	. 73
	4.3.1.1	I/O 仿真	. 73
	4.3.1.2	数字量输入(Dls)	. 76
	4.3.1.3	数字量输出(DOs)	. 81
	4.3.1.4	模拟量输入(Als)	. 84
	4.3.1.5	模拟量输出(AOs)	. 85
	4.3.1.6	脉冲输入(PTIs)	. 86
	4.3.1.7	编码器信号输出(PTOs)	. 86

4.3.2	测试电机	
4.3.2.1	Jog	
4.3.2.2	位置试运行	
4.3.3	优化驱动	
4.3.3.1	一键自动优化	
4.3.3.2	实时自动优化	
4.3.3.3	手动优化	
4.3.3.4	低频振动抑制	
4.4	诊断	
4.4.1	监控电机状态	
4.4.2	录波信号	
4.4.2.1	录波配置	
4.4.3	测量机械性能	
4.5	与 PLC 通讯	
4.5.1	USS 通信	
4.5.2	Modbus 通信	115
索引		131

安全说明

1.1 基本安全说明

1.1.1 一般安全说明

▲警告 未遵循安全说明和遗留风险可引发生命危险 忽视随附硬件文档中的安全说明和遗留风险会导致重伤或死亡。 ● 遵守硬件文档中的安全说明。

• 进行风险评估时应考虑到遗留风险。

因参数设置错误或修改参数设置引起机器误操作可引发生命危险

参数设置错误可导致机器出现误操作,从而导致人员重伤或死亡。

- 防止恶意访问参数设置。
- 采取适当措施(如驻停或急停)应答可能的误操作。

1.1 基本安全说明

1.1.2 工业安全

说明

工业安全

西门子为其产品及解决方案提供工业安全功能,以支持工厂、解决方案、机器、设备和/ 或网络的安全运行。这些功能是整个工业安全机制的重要组成部分。有鉴于此,西门子 不断对产品和解决方案进行开发和完善。西门子强烈建议您定期了解产品更新和升级信息。

此外,要确保西门子产品和解决方案的安全操作,还须采取适当的预防措施(例如:设备 单元保护机制),并将每个组件纳入先进且全面的工业安全保护机制中。可能使用的所 有第三方产品须一并考虑。更多有关工业安全的信息,请访问网址

(http://www.siemens.com/industrialsecurity)。

要及时了解有关产品的更新和升级信息,请订阅相关产品的时事通讯。更多相关信息请访问 网址 (http://support.automation.siemens.com)。

篡改软件会引起不安全的驱动状态从而导致危险

篡改软件(如:病毒、木马、蠕虫、恶意软件)可使设备处于不安全的运行状态,从而可能导致死亡、重伤和财产损失。

- 请使用最新版软件。
 相关信息和新闻请访问 网址 (<u>http://support.automation.siemens.com</u>)。
- 根据当前技术版本,将自动化组件和驱动组件整合至设备或机器的整体工业安全机制中。

更多相关信息请访问 网址 (http://www.siemens.com/industrialsecurity)。

• 在整体工业安全机制中要注意所有使用的产品。

2

SINAMICS V-ASSISTANT

SINAMICS V90

SINAMICS V-ASSISTANT 工具用于调试和诊断 SINAMICS V90 驱动。 该坐标软件可在 装有 Windows 操作系统的个人电脑上运行,利用图形用户界面与用户互动,并能通过 USB 与 V90 驱动通信。 还可用于修改 SINAMICS V90 驱动的参数并监控其状态。

2.1 SINAMICS V-ASSISTANT 操作环境

SINAMICS V-ASSISTANT 可在以下操作系统上运行:

- Windows XP SP3(家庭版)
- Windows XP SP3(专业版)
- Windows 7 32 位 (家庭高级版)
- Windows 7 32 位(专业版)
- Windows 7 32 位 (旗舰版)
- Windows 7 64 位 (家庭高级版)
- Windows 7 64 位(专业版)
- Windows 7 64 位 (旗舰版)

说明

最小屏幕分辨率必须为 1024×768。

2.2 系统配套表

2.2 系统配套表

SINAMICS V90 伺服驱动和 SIMOTICS S-1FL6 伺服电机的配套情况如下表所示。

V90 200 V 系列驱动与低惯量电机配套表

SIMOTICS S-1FL6 伺服电机								SINAMICS V90	伺服驱动	力
类型	额定 扭矩 (Nm)	额定 功率 (kW)	额定速度 (rpm)	轴高 (mm)	电机 I 不带 抱闸	D 带抱 闸	订货号1)	订货号	外形 尺寸	电源
低惯 量	0.16	0.05	3000	20	42 *	43	1FL6022- 2AF21- 1A❑1	6SL3210- 5FB10-1UA0	FSA	1/3 相 AC 200 V
	0.32	0.1	3000	20	46	47	1FL6024- 2AF21- 1A❑1		至 <i>F</i> 240	至 AC 240 V
	0.64	0.2	3000	30	50 *	51	1FL6032- 2AF21- 1A❑1	6SL3210- 5FB10-2UA0		
	1.27	0.4	3000	30	54 *	55	1FL6034- 2AF21- 1A❑1	6SL3210- 5FB10-4UA1	FSB	
	2.39	0.75	3000	40	58 *	59	1FL6042- 2AF21- 1A❑1	6SL3210- 5FB10-8UA0	FSC	
	3.18	1	3000	40	62 *	63	1FL6044- 2AF21- 1A❑1	6SL3210- 5FB11-0UA1	FSD	3 相 AC 200 V
	4.78	1.5	3000	50	66 *	67	1FL6052- 2AF21- 0A❑1	6SL3210- 5FB11-5UA0		至 AC 240 V
	6.37	2	3000	50	70 *	71	1FL6054- 2AF21- 0A❑1	6SL3210- 5FB12-0UA0		

2.2 系统配套表

V90 400 V 系列驱动与高惯量电机配套表

SIMO	TICS S-1	-L6 伺服	电机		SINAMICS \	/90 伺服	驱动			
类型	额定	额定	额定速度	轴高	电机 ID		订货号1)	订货号	外形	电源
	扭矩	功率	(rpm)	(mm)	不带带抱闸				尺寸	
	(Nm)	(kW)			抱闸	J				
高惯	1.27	0.4	3000	45	18 *	19	1FL6042-	6SL3210-	FSAA	3相
量							1AF61-	5FE10-		AC
							0A❑1	4UA0		380 V
					10009	10038	1FL6042-			至 AC
							1AF61-			480 V
							0L□1			
	2.39	0.75	3000	45	20 *	21	1FL6044-	6SL3210-	FSA	
							1AF61-	5FE10-		
							0A❑1	8UA0		
					10010	10039	1FL6044-			
							1AF61-			
							0L□1			
	3.58	0.75	2000	65	22	23	1FL6061-			
							1AC61-	6SL3210-		
							0A❑1	5FE11-		
					10011	10040	1FL6061-	0UA0		
							1AC61-			
							0L□1			
	4.78	1.0	2000	65	24 *	25	1FL6062-			
							1AC61-			
							0A□1	-		
					10012	10041	1FL6062-			
							1AC61-			
				-						
	7.16	1.5	2000	65	26 *	27	1FL6064-	6SL3210-	FSB	
							1AC61-	5FE11-		
								5UA0		
					10013	10042	1FL6064-			
							1AC61-			
								4		
	8.36	1.75	2000	65	28	29	1FL6066-			
							1AC61-			
					40011	400.10		4		
					10014	10043	1FL6066-			
							1AC61-			
					1		UL U 1			

2.2 系统配套表

SIMO	TICS S-1	▪L6 伺服□	电机			SINAMICS V	/90 伺服	驱动		
类型	额定 扭矩 (Nm)	额定 功率 (kW)	额定速度 (rpm)	轴高 (mm)	电机 ID 不带 抱闸	带抱闸	订货号 1)	订货号	外形 尺寸	电源
	9.55	2.0	2000	65	30 *	31	1FL6067- 1AC61- 0A❑1	6SL3210- 5FE12- 0UA0		
					10015	10044	1FL6067- 1AC61- 0L⊒1			
	11.9	2.5	2000	90	32	33	1FL6090- 1AC61- 0A❑1			
					10016	10045	1FL6090- 1AC61- 0L□1			
	16.7	3.5	2000	90	34 *	35	1FL6092- 1AC61- 0A❑1	6SL3210- 5FE13- 5UA0	FSC	
					10017	10046	1FL6092- 1AC61- 0L□1			
	23.9	5.0	2000	90	36 *	37	1FL6094- 1AC61- 0A❑1	6SL3210- 5FE15- 0UA0		
					10018	10047	1FL6094- 1AC61- 0L⊒1			
	33.4	7.0	2000	90	38 *	39	1FL6096- 1AC61- 0A❑1	6SL3210- 5FE17- 0UA0		
					10019	10048	1FL6096- 1AC61- 0L□1			

^{1⁾} 电机订货号中的符号 ❑表示选配(机械结构)。关于电机铭牌的详细信息,请参见 SINAMICS V90, SIMOTICS S-1FL6 操作说明。

^{2⁾} 带有星号(*)标记的电机 ID 表示 V90 驱动器默认的增量编码器电机 ID。若您为驱动器连接了其他电机,需要手动修改电机 ID 的值。

用户界面

3.1 工作模式

启动 SINAMICS V-ASSISTANT 时,会出现以下窗口供您选择工作模式:

选择工作模式	×
	SINAMICS V90, 订货号: 6SL3210-5FE10-4UA0, V10500
在线	
离线	
1.4.50	
	选择语言: 中文 - 确定 取消

SINAMICS V-ASSISTANT 的功能在不同工作模式下有所区别。

• 在线模式: SINAMICS V-ASSISTANT 与目标驱动通讯,该驱动通过 USB 电缆连接 到 PC。

选择在线模式后,会显示所有已连接的驱动列表。选择目标驱动并点击以下按钮。 确定

SINAMICS V-ASSISTANT 自动创建新工程来保存目标驱动的所有参数设置并进入主窗口。

说明

若 SINAMICS V-ASSISTANT 未能立即检测到连接的电机,请等待一会然后重新插入 USB 电缆。

- 离线模式: SINAMICS V-ASSISTANT 不与任何已连接的驱动通讯。

有两个选项可供选择:

- 如选择第一个选项,您必须从以下窗口中选择驱动:

丁货号	额定功率(kW)	额定电流(A)
SL3210-5FE10-4UA0	0.4	1.2
SL3210-5FE10-8UA0	0.75	2.1
SL3210-5FE11-0UA0	1	3.0
SL3210-5FE11-5UA0	1.5	5.3
SL3210-5FE12-0UA0	2	7.8
SL3210-5FE13-5UA0	3.5	11.0
SL3210-5FE15-0UA0	5	12.6
SL3210-5FE17-0UA0	7	13.2

分别从下拉列表中选择进线电压和固件版本。选择驱动订货号。点击 确定 将所 选驱动的出厂设置保存到新工程并进入主窗口;或者,点击 取消 取消。

说明

若要获得固件版本,您可以通过 BOP(基本操作面板)查看参数 r29018。 更多详情 请参见 SINAMICS V90, SIMOTICS S-1FL6 操作说明。

- 如选择第二个选项,您需要在以下目录中选择一个现有工程作为当前工程并进入主 窗口:

★ 打开已有工程					×
Siemens > PCTool > Pro	ect ►	1 •	47	Search Project	٩
Organize 🔻 New folder				• ==	
Arr Favorites	^			Date modified	Туре
Desktop Downloads Recent Places Descurents Music Distures	meters_files			1/28/2015 4:08 PM 2/3/2015 2:14 PM	File folder PRJ File
Videos Computer SYSTEM (C:) Data (D:)					
File name:			•	Project file(.prj) (*.prj) Open	2 ▼ Cancel

1	默认位置是: xxx/Siemens/V-ASSISTANT/Project.
	xxx: SINAMICS V-ASSISTANT 设置根目录。
2	仅.prj 格式可用。

状态指示灯

在 SINAMICS V-ASSISTANT 主窗口中,右上角的状态指示灯可显示当前的工作模式:

离线

您可在这两种工作模式之间切换。更多信息请参见章节"切换菜单(页 26)"。

3.1 工作模式

参数比较

从离线工作模式切换到在线时,会出现以下问题提示您保存当前工程:

然后 SINAMICS V-ASSISTANT 会自动比较当前工程和所连驱动中的参数设置:

参数比较	
正在读取驱动中的数据:111	

参数比较			×
参数	项目文件中的值	驱动中的值	^
p29000	0	18	
p29012[1]	0	1	
p29012[2]	0	1	
p29012[3]	0	1	
p29050[1]	0.000	300.000	
p29050[2]	0.000	300.000	
p29051[1]	0.000	-300.000	
p29051[2]	0.000	-300.000	
p29070[0]	210000.000	4000.000	
p29070[1]	0.000	4000.000	
p29070[2]	0.000	4000.000	
p29071[0]	-210000.000	-4000.000	
p29071[1]	0.000	-4000.000	
p29071[2]	0.000	-4000.000	
p29080	95.000	100.000	
p29120[0]	0.300	0.121	
p29120[1]	0.000	0.300	
p29121[0]	20.000	15.000	~
驱动到电脑		电脑到驱动	

如检测到任何不一致,以下窗口会出现:

点击第一个按钮将所连驱动的所有参数值上载到当前工程;或者,点击第二个按钮将当前 工程的所有参数值上载到所连驱动。 3.2 用户界面一概述

3.2 用户界面一概述

(1)	SIEMENS SINAMICS V-ASSISTAL 工程(PL 编辑)FL 机构(SL T	17 月17日 - 板助山					_ # ×	
Ž—				中机洗塔			ØEEMI#	
	选择驱动		选定使用如下订货号的西门子s 30规则。 3LS210-5FE10-4UAO		已选定使用如下订 SINAMICS电机。 1FL6042-1AF6%3	货号的西门子 AANGX		
	,设置参数	世界	结电压: 400 ∨ 定功率: 0.4 KW 定电液: 1.2 A		额定功率, 额定电流, 额定电压,	0.4 KW 1.3 A 400 V		
	, 调试				顿定速度, 顿定扭矩, 编码器关型,	3000 rpm 1.27 Nm 增量式		
	,诊断		法择驱动		抱到可用性; 选择电机	N		
3			M((Pos) :	 已述将六部设士置位置支制(中使用六部位置总士属未控制电使用六部位置总士属未控制电 实际电流 (A) 0.000 	'as] 視速度和方向,并进行定位。 实际电机利用率 (%) 0.000)—_(4)
		▶告答				8 0 <u>A</u> 1 💌 🗉	全部清除	(5)
(1) (2) (3) (4) (5)	菜单栏 工具栏 任务导航 功能面板 告警窗口							

菜单栏

菜单栏位于 SINAMICS V-ASSISTANT 窗口顶部。可使用 SINAMICS V-ASSISTANT 基本操作的不同指令和功能。更多信息请参见章节"菜单栏 (页 21)"。

工具栏

工具栏位于菜单栏下方。可通过工具栏直接使用 SINAMICS V-ASSISTANT 的基本功能。更多信息请参见章节"工具栏 (页 31)"。

3.3 菜单栏

任务导航

任务导航列出了用户可实现的用户任务。每个任务包含了便于用户对 V90 驱动进行参数 设置、监控或诊断的不同功能。更多信息请参见章节"任务导航 (页 35)"。

功能面板

该功能面板提供了每个用户任务的用户界面以供用户来执行相关功能。

告警窗口

在线模式下,会列出带有类型、编号和名称的当前故障和告警列表。离线模式下,告警窗口禁用。更多信息请参见章节"告警窗口 (页 32)"。

3.3 菜单栏

3.3.1 菜单栏一概述

菜单栏列出了可供用户管理工程、切换界面语言或查看在线帮助的菜单项:

- 工程菜单(页 21) 编辑菜单(页 25) 切换菜单(页 26) 工具菜单(页 27) 帮助菜单(页 31)
- 3.3.2 工程菜单

该菜单包含创建、打开、保存、打印或退出工程以及切换界面语言的指令。可选择任意 菜单指令进行工程管理。

- 新建工程 (页 22)
- 打开工程 (页 22)
- 保存工程 (页 23)
- 工程另存为 (页 24)

3.3 菜单栏

- 打印 (页 24)
- 语言 (页 25)
- 退出 (页 25)

3.3.2.1 工程 -> 新建工程

SINAMICS V-ASSISTANT 离线工作时,可使用该菜单指令创建新工程。继续操作,请参见选择驱动(页 38)。

3.3.2.2 工程 -> 打开工程

SINAMICS V-ASSISTANT 离线工作时,可使用该菜单指令在以下窗口中打开已有工程:

① 默认位置是: xxx/Siemens/V-ASSISTANT/Project.
 xxx: SINAMICS V-ASSISTANT 设置根目录。

② 仅 .prj 格式可用。

3.3.2.3 工程 -> 保存工程

在线模式/离线模式

可使用该菜单指令将更改后的配置保存到当前工程。如该菜单指令为第一次使用,则功能同"工程 -> 工程另存为 (页 24)"。可在以下窗口指定文件名称和目录:

		×
Siemens > PCTool > Project > 1 + 47	Search Project	٩
Organize 🔻 New folder	8==	• 🔞
★ Favorites Name Desktop Downloads Recent Places Libraries Documents Music Pictures Videos	Date modified 1/28/2015 4:08 PM	Type File folder
File name: default.prj Save as type: Project file(.prj) (*.prj)		•
Hide Folders	Save	ancel

- ① 默认位置是: xxx/Siemens/V-ASSISTANT/Project。
 xxx: SINAMICS V-ASSISTANT 设置根目录。
- ② 仅 .prj 格式可用。

3.3 菜单栏

3.3.2.4 工程 -> 工程另存为

在线模式/离线模式

可使用该菜单指令在以下窗口以指定文件名称和目录保存当前工程:

工程另存为 《 Siemens ▶ PCTool ▶ Project ▶ 1 ▼ 4	Search Project	x
Organize New folder	800 -	
★ Favorites Name ■ Desktop Export_Parameters_files ▶ Downloads ■ ■ Recent Places ■ ■ Libraries ■ ▶ Documents ▶ ▶ Music ■ ■ Pictures ■ ▼ Videos ■	Date modified 1/28/2015 4:08 PM	Type File folder
File name: default.prj Save as type Project file(.prj) (*.prj) (2)		•
) Hide Folders	Save Ca	ncel

① 默认位置是: xxx/Siemens/V-ASSISTANT/Project.
 xxx: SINAMICS V-ASSISTANT 设置根目录。

② 仅.prj 格式可用。

3.3.2.5 工程 -> 打印

在线模式/离线模式

可使用该菜单指令打印"任务导航 (页 35)"中所选功能的用户界面。

3.3.2.6 工程 -> 语言

在线模式/离线模式

可以使用该菜单指令切换不同的界面语言,包括英文,中文,德语,法语,意大利语,土 耳其语,西班牙语以及葡萄牙语。

3.3.2.7 工程 -> 退出

在线模式/离线模式

可使用该菜单指令直接退出 SINAMICS V-ASSISTANT。

3.3.3 编辑菜单

该菜单包含剪切、复制、粘贴参数值或电机和驱动相关技术数据的指令。

- 剪切 (页 25)
- 复制 (页 25)
- 粘贴 (页 26)

3.3.3.1 编辑 -> 剪切

该指令可删除所选对象,例如,用户界面上的参数值,并将其复制到剪贴板。 或者,也可使用工具栏上的 ¥。

说明

该菜单指令仅用于修改"查看所有参数(页70)"中的值。

3.3.3.2 编辑 -> 复制

该指令用于将所选对象,例如,参数值,订货号或驱动、电机的额定功率,复制到剪贴板。

或者,也可使用工具栏上的 💼。

说明

仅能在以下功能面板上使用该菜单指令:

- 选择驱动 (页 38)
- 选择电机 (页 40)
- 查看所有参数 (页 70)
- 信号 (页 73)

3.3.3.3 编辑 -> 粘贴

该菜单指令可将剪贴板上的内容复制到输入区域。 所复制的内容会插入到鼠标点击的位置。

或者,也可使用工具栏上的 🛅。

说明

该菜单指令仅用于修改查看所有参数(页 70)中的值。

3.3.4 切换菜单

该菜单包含以下两个用于 SINAMICS V-ASSISTANT 在线模式与离线模式之间切换的指令。

- 💕 离线 (页 26)
- 🔰 在线 (页 26)

3.3.4.1 切换 -> 离线

SINAMICS V-ASSISTANT 离线工作时,可使用该菜单指令切换到离线模式。 或者,也可使用工具栏上的 2.

3.3.4.2 切换 -> 在线

SINAMICS V-ASSISTANT 离线工作时,可使用该菜单指令切换到在线模式。 或者,也可使用工具栏上的**》**。

3.3.5 工具菜单

工具菜单包含下列菜单指令:

- 工具 -> 保存参数到 ROM (页 27)
- 工具 -> 重启驱动器 (页 27)
- 工具 -> 绝对值编码器复位 (页 28)
- 工具 -> 出厂设置 (页 28)
- 工具 -> 上载参数 (页 30)

3.3.5.1 工具 -> 保存参数到 ROM

可使用该菜单指令将参数从 RAM 保存到驱动的 ROM。以下窗口显示保存进程:

正在存储所有参数到驱动ROM
注意: 驱动正忙,不要关闭本窗口!

或者,也可使用工具栏上的 🚵。

3.3.5.2 工具 -> 重启驱动器

可使用该菜单指令重启驱动。以下提醒会出现:

<u>用户界面</u> 3.3 菜単栏 如点击 是 , 则以下信息会出现: ③ SINAMICS V-ASSISTANT当前处于离线工作模式。 ④ Mac

点击 确定 , 驱动重启成功。

3.3.5.3 工具 -> 绝对值编码器复位

在线模式下,如 SINAMICS V-ASSISTANT 连接到绝对值编码器,则可使用该菜单指令将绝对值编码器的当前位置设为参考点。

3.3.5.4 工具 -> 出厂设置

在线

选择该菜单指令,将会出现如下提示:

如点击 <u>是</u>,则以下信息窗口会出现:
 驱动正在复位所有参数...
 注意:驱动正忙,不要关闭本窗口!

进程结束后,窗口自动消失。

• 若点击 _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ , 操作将会被中止。

离线

选择该菜单指令,将会出现如下提示:

疑问	×
2	参数数据将会恢复为出厂值。是否继续?
8	是 否 取消

3.3 菜单栏

3.3.5.5 工具 -> 上载参数

说明 该菜单指令仅用于在线模式。

您可以使用该菜单指令将参数从驱动上载到 SINAMICS V-ASSISTANT。将会出现以下 窗口来显示进程:

从驱动读取参数	×
SINAMICS V-ASSISTANT正在从驱动中读取所有参数	
取消	

当进程完成后,SINAMICS V-ASSISTANT 中的参数值将会被其在驱动中的值自动替换。

3.3.6 帮助菜单

在线帮助可快速提供关于使用 SINAMICS V-ASSISTANT 进行驱动选择、参数设置、调 试及诊断的信息。

- 帮助 -> 内容 (页 31)
- 帮助 -> 关于 SINAMICS V-ASSISTANT... (页 31)

3.3.6.1 帮助 -> 内容

可使用该菜单指令显示 SINAMICS V-ASSISTANT 在线帮助的内容。

3.3.6.2 帮助 -> 关于 SINAMICS V-ASSISTANT...

可使用该菜单指令显示 SINAMICS V-ASSISTANT 的以下信息窗口。

3.4 工具栏

可通过工具栏的图标快速使用菜单栏上的指令或任务导航 (页 35)中的功能。

🕑 🔁 🖶 📇 | X 🗈 🖆 | 🖉 🌽 | 🚵 C' | 🎫 🕁 | ?

- 新建工程 (页 22)
- 打开工程 (页 22)
- 📙 保存工程 (页 23)

用户界面

3.5 告警窗口

- 昌 打印 (页 **24**)
- X 剪切 (页 25)
- 复制 (页 25)
- 🛅 粘贴 (页 26)
- 📝 🛛 离线 (页 26)
- 💋 在线 (页 26)
- 🚵 保存参数到 ROM (页 27)
- C 上传参数 (页 30)
- 查看所有参数 (页 70)
- 左 录波 (页 104)
- 测试电机 (页 86)
- ? 帮助 (页 31)

3.5 告警窗口

告警窗口概述

1	2	3 (4)
▼告警		── 全部清除
类型	告警编号	名称
8	52983	无编码器
<u> </u>	7454	位置环:位置实际值处理没有有效的编码器
<u> </u>	7588	编码器 2: 位置实际值处理没有有效的编码器
A	30016	功率单元:负载电源关闭

1	告警类型:	3	告警名称和描述
	☎:故障		
	1:报警		
	故障的显示优先级高于告警。		
2	告警号	4	全部清除:
			清除驱动缓存区的故障

3.6 功能键和快捷键

对于频繁调用的功能,可使用相关功能键和快捷键。

SINAMICS V-ASSISTANT 中的功能键

[F1]	→ 调用上下文相关的在线帮助
[Ctrl+X]	→ 编辑 -> 剪切 (页 25)
[Ctrl+C]	→ 编辑 -> 复制 (页 25)
[Ctrl+V]	→ 编辑 -> 粘贴 (页 26)

用户界面

3.6 功能键和快捷键

任务导航

任务	子功能
选择驱动 (页 37)	• 选择驱动 (页 38)
	• 选择电机 (页 40)
	• 控制模式 (页 41)
	● Jog (页 43)
参数设置 (页 44)	 设置电子齿轮比 (页 45)
	• 设置机械结构 (页 48)
	 设置参数设定值 (页 48)
	• 设置极限值 (页 57)
	• 配置输入/输出 (页 60)
	 配置回零参数 (页 62)
	• 设置编码器脉冲输出 (页 69)
	 反向间隙补偿 (页 69)
	 查看所有参数 (页 70)
调试 (页 73)	• 测试接口 (页 73)
	• 测试电机 (页 86)
	• 优化驱动 (页 89)
诊断 (页 103)	• 监控电机状态 (页 103)
	• 录波信号 (页 104)
	• 测量机械性能 (页 108)
4.1 选择驱动

SEMENS SINAMICS V-ASSISTA		_ # X
	부민 해외년	ØF在梯丁作
任务导航	^現 动沈絳 电机选择	
选择驱动	已检查使用如下订换号的面门子 SINAMICS 已经应使用如下订换号的面门子 SINAMICS	
,设置参数	世話した10-31-02 10-31-02 10-31-02 世話した 「日本の 「「日本の 」 「日本の 「日本の 」 「本の 」 「本の 」	
• 调试		2
,诊断	指領可用性。 N 法据电机 法据电机	-
	20世界の たまで、 た 、 た た た た た た た た た た た た た	
	内據決定循位置控制(IPos) 已述并付除改定值位置控制(IPos) 使用付解论定值位置控制和有点并进行定位。	3
	Jog	
	何解使她 III	
		4
	四环建度 (rpm) 四环扭矩 (Nm) 四环电流 (A) 四环电机利用率 (%)	
	0.000 0.000 0.000	
	4	
	▶ 告誓 (X0) ▲ 1	✓ 全部清除

1	驱动选择	在该区域选择驱动。
		更多信息请参见章节"选择驱动 (页 38)"。
2	电机选择	在该区域选择电机。
		更多信息请参见章节"选择电机 (页 40)"。
3	控制模式	在该区域选择控制模式。
		更多信息请参见章节"控制模式 (页 41)"。
4	Jog	在该区域测试 Jog 功能。
		更多信息请参见章节"Jog (页 43)"。

4.1.1 选择驱动

在线模式

选择在线工作模式时,会显示所连驱动型号列表供您选择:

选择工作模式				×
	SINAMICS V90,	订货号: 6SL3210	-5FE10-4UA0,	V10500
左 援				
11-58				
			确定	取消

选择目标驱动型号,点击 确定 建立 SINAMICS V-ASSISTANT 与驱动之间的通讯。 SINAMICS V-ASSISTANT 从所连驱动上读取所有参数设置,主窗口在以下面板上显示驱 动信息:

驱动选择					
	已选定使用如下订货号的西门子SINAMICS V90驱动。 6SI 2210 5EE10 4040				
	进线电压: 额定功率: 额定电流:	400 V 0.4 kW 1.2 A			
	选择驱动				

显示以下驱动信息:

- 订货号
- 进线电压

- 额定功率
- 额定电流

说明

在线模式时 选择驱动 禁用。

离线模式

当处于离线工作模式时, SINAMICS V-ASSISTANT 不与所连驱动通讯。

```
可点击 选择驱动 在以下窗口中更改驱动类型:
```

驱动选择		×
进线电压: 400/ -	固件版本 (r29018[0]):	10500
订货号	额定功率(kW)	额定电流(A)
6SL3210-5FE10-4UA0	0.4	1.2
6SL3210-5FE10-8UA0	0.75	2.1
6SL3210-5FE11-0UA0	1	3.0
6SL3210-5FE11-5UA0	1.5	5.3
6SL3210-5FE12-0UA0	2	7.8
6SL3210-5FE13-5UA0	3.5	11.0
6SL3210-5FE15-0UA0	5	12.6
6SL3210-5FE17-0UA0	7	13.2
		确定 取消

选择目标驱动订货号。点击 确定 将所选驱动的出厂设置保存到新工程并进入主窗 口;或者,点击 取消 取消。

4.1.2 选择电机

在线模式

•	如所连电机配备的是绝对结	编码器,	则	选拔	肇电机	禁用。
	电机选择					
	1	已选定使 SINAMIC	用如下 S电机。	订货 [;]	号的西门子	
	A	1FL6067	'-1ACE	ix-xLB	\Hx	
		额定功率	₹:		2 KW	
		额定电流	ī:		6.4 A	
		额定电压	<u>.</u> :		400 V	
		额定速度			2000 rpm	
		额定扭矩	:		9.55 Nm	
		编码器类	型:		绝对式	
		抱闸可用]性:		Y	
		选择	產电机			

说明

订货号中,"x"为通配符;更多关于"A/G"的信息,请参见 SINAMICS V90, SIMOTICS S-1FL6 操作说明。

• 如所连电机配备的是增量式编码器,点击___选择电机___可显示电机列表。

机标识	电机订货号	額定电流 (A)	额定扭矩 (Nm)		编码器	抱阑
8	1FL6042-1AF6x-xA	1.3	1.27	0.4	INC.2500ppr	N
9	1FL6042-1AF6x-xA	1.3	1.27	0.4	INC.2500ppr	Y
ж.						
二. E注東度:	3000 mm					
E电压:	400 V					
器类型:	增量式 2500 ppr					

.

在列表中选择电机并点击以下按钮来确认选择:

确定

说明

您可以点击上面窗口中的"铭牌"来查看电机铭牌的具体位置。

离线模式

- 如选择创建新工程,您需要首先选择驱动,则可显示默认电机的信息。
- 如选择打开已有工程,则可显示所保存的电机信息。
- 如从在线模式切换到离线模式,可通过点击 选择电机 选择电机。

4.1.3 控制模式

在线模式/离线模式

於部族時位置控制(PTI)

→ 已选择外部脉冲位置控制(PTI)

使用脉冲来控制电机递度和方向,并进行定位。

共计九种控制模式:

控制模式		缩写
基本控制模式	外部脉冲位置控制(PTI) ¹⁾	PTI
	内部设定值位置控制(IPos)	IPos
	速度控制(S)	S
	扭矩控制(T)	Т
复合控制模式	控制切换模式: PTI/S	PTI/S
	控制切换模式: IPos/S	IPos/S
	控制切换模式: PTI/T	PTI/T
	控制切换模式: IPos/T	IPos/T
	控制切换模式: S/T	S/T

1) 默认控制模式

选择控制模式

选择控制模式后,会出现警告消息:

疑问	x
控制模式改变后,部分现有模式的相关功能将被禁用。确定改变控制模式吗?	
是否取消	in.
点击 是 会出现如下消息:	
疑问	×
控制模式已经修改成功。为了使新的控制模式生效,需要将所有参数保存到ROM并复位 驱动!需要保存参数并复位驱动吗?	
是否取消	
点击 <u>是</u> 将所有参数保存到只读存储器中然后重启驱动。 或者, 占击下面的按钮或直接关闭对话框, 驱动可继续以当前的控制模式工作。	

否

4.1.4 Jog

Jog 功能仅用于在线模式。可在以下面板上配置该功能:

og							
	伺服使能 📗	1					
转速 [1 实际速度	oo p	m 🕤 🖸	实际目	电流 (A)	实际电机利用	奉 (%)	
	0.000	0	.000	0.00	00	0.012	
欲启月 告 :	月 Jog 功能	,先输入 Jog	g 速度。 /	点击	伺服使能	回 ,会日	出现以下警
4	此功能仅 请注意:必 运行过程。	共有权限的用户使用 须采取适当方式将7 中, 请确保电机和机	。 更件装置達到运 械装置的实际位	行限位信号(CV 位置有效。	VL/CCWL)。		
						确定	
点击	确定 并	分别点击以	下两个按领	钮顺时针/i	逆时针运行驱	区动:	
5	C						
然后会	显示实际速	速度、实际扭	矩、实际	电流以及到	实际电机利用	率。	
要停」 ASSIS	止 Jog 功能 STANT 会释	,可在以下 放控制优先	窗口点击_ 权。	伺服	关使能 🔲	,则 SINA	MICS V-
Jog	何服子使能						- /
	HARACICE						-

0.003

0.008

说明

Jog 速度不应过快。 否则,可能因为通信延迟导致机床轴失控。

0.000

0.000

1

4.2 参数设置

共计九个功能。子功能组合因控制模式不同而有所区别:

功能	控制模式			
	PTI	IPos	S	Т
设置电子齿轮比 (页 45)	1			
设置机械结构 (页 48)		1		
设置参数设定值 (页 48)	1	✓	1	1
设置极限值 (页 57)	1	1	1	1
配置输入/输出 (页 60)	1	✓	1	1
配置回零参数 (页 62)		✓		
设置编码器脉冲输出 (页 69)	1	1		
反向间隙补偿 (页 69)		1		
查看所有参数 (页 70)	\checkmark	\checkmark	\checkmark	\checkmark

4.2.1 设置电子齿轮比

4.2.1.1 概述

设置电子齿轮比仅用于外部脉冲位置控制(PTI)。

选择一个选项设置电子齿轮比:

•	手动输入电子齿: 电子齿轮比 =	÷et	1 p29012[0] 1 p29013		1
0	电机转动一圈所:	需要的给定脉冲数		0 p29011	2
0	根据所选择的机	械结构形式计算电子齿	轮比		3
1	120002 1202 丝杠	図盘	● ■ 皮带轮	www.wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww	<u></u> 記 報式帯

选件	描述
1	电机每转的设定值脉冲数(p29011)为0时,通过设置分子(p29012)和分母(p29013)配置电子齿轮比。
2	电机每转的设定值脉冲数不为 0 时,在此输入电机转动一圈所需要的给定脉冲数。
3	根据不同机械结构计算电子齿轮比。 共计五种机械结构: 1. 滚珠丝杠 2. 圆盘 3. 皮带轮 4. 齿轮齿条 5. 辊式带 更多信息请参见"机械结构 (页 46)"。 需要输入螺距和齿轮比。选择显示单位并点击 <u>计算</u> 。即可算出电子齿轮 比。

4.2.1.2 机械结构

变量

根据所选机械结构配置变量:

机械结构	图形视图	变量设置	
		变量	范围
滚珠丝杠		P: 螺距(mm)	0.0001 至 2147000000
		N: 负载转数	1 至 2147000000
	K重加税社 Kの重加税社 Kの重加税社 Kの重加税社 Kの重加税社 Kの	M: 电机转数	1 至 2147000000
圆盘	*	N: 负载转数	1 至 2147000000
		M: 电机转数	1 至 2147000000
皮带轮		D:直径(mm)	0.0001 至 2147000000
		N: 负载转数	1 至 2147000000
		M: 电机转数	1 至 2147000000
齿轮齿条	Tanana and a second sec	D:直径(mm)	0.0001 至 2147000000
		N: 负载转数	1 至 2147000000
		M: 电机转数	1 至 2147000000
辊式带		D: 直径(mm)	0.0001 至 2147000000
		N: 负载转数	1至2147000000
		M: 电机转数	1 至 2147000000

单位

配置所选机械结构的变量后,必须从以下单位中选择一个并输入取值范围内的值:

- 长度单位
 范围: 0.0001 至 2147000000
- 负载轴转动一圈需要的长度单位
 - 范围: 1 至 2147000000

计算

点击 计算 计算电子齿轮比,计算结果如下例所示:

	选择以下任一显示单位。点击"计算"按钮计算电子齿轮比的值。							
۲	长度单位(LU)	0.010 [mm]						
0	负载轴转动一圈需要	100 [长度单位]						
	计算							
	电子齿轮比变成以下值(比值范围是0.02~200)							
	电子齿轮比 =	p29012[0] 3000 p29013						

说明

如电子齿轮比的分子或分母大于 10000,则齿轮比会自动约分以使分子和分母都小于 10000.

4.2.2 设置机械结构

通过设置机械系统的参数,可建立实际运动部件和长度单位(LU)之间的联系。选择机 械结构。在以下面板上设置齿轮箱系数和负载轴每转的长度单位:

内部位置设定值的单位为长度单位(LU)。所有后续位置设定值,相关速度值和加速度 值在内部设定值位置控制模式下都以LU为单位。

以丝杠系统为例,如系统有 10 mm/转的螺距,则长度单元的分辨率应为 1 μm (1 LU = 1 μm)。因此,负载转一圈相当于 10000 LU (p29247 = 10000)。

4.2.3 设置参数设定值

设置参数设定值可用于设定速度、扭矩和位置相关的参数。 可根据当前控制模式如下配置子功能的参数:

功能	控制模式				
	PTI	IPos	S	Т	
信号类型选择 (页 53)	1				
位置设定平滑时间设置	1	1			
(页 53)					

功能				
	PTI	IPos	S	Т
位置到达窗口设置 (页 53)	1	1		
内部位置设定值 (页 53)		1		
速度设定值 (页 50)			✓	
斜坡函数发生器 (页 50)			1	
速度到达窗口 (页 50)			\checkmark	
扭矩设定值 (页 49)				1

在复合控制模式下,设置参数设定值可参考单一控制模式。

4.2.3.1 扭矩设定值

扭矩设定值的源

扭矩设定值有两个源可用:

- 外部设定值: 模拟量输入2
- 内部设定值: p29043

这两个源可用数字量输入信号 TSET 选择:

信号	电平	扭矩设定值的源
TSET	0 (默认 值)	模拟量扭矩设定值(模拟量输入2)
	1	内部扭矩设定值(p29043)

4.2.3.2 速度设定值

速度设定值的源

共计八个源可用于速度设定值。 可通过数字量输入信号组合 SPD1, SPD2 和 SPD3 选择其一:

数字量信号			扭矩限制
SPD3	SPD2	SPD1	
0	0	0	外部模拟量速度设定值(模拟量输入1)
0	0	1	内部速度设定值1(p1001)
0	1	0	内部速度设定值 2(p1002)
0	1	1	内部速度设定值 3(p1003)
1	0	0	内部速度设定值 4(p1004)
1	0	1	内部速度设定值 5(p1005)
1	1	0	内部速度设定值 6 (p1006)
1	1	1	内部速度设定值 7(p1007)

斜坡函数发生器

斜坡函数发生器可在设定值突然改变时用来限制加速度从而防止驱动运行时发生过载。

斜坡上升时间 p1120 和斜坡下降时间 p1121 可分别用于设置加速度和减速度斜坡。设定 值改变时允许平滑过渡。

共计两种斜坡函数发生器。可在相关面板上设置参数:

• 基本斜坡函数发生器

• 扩展斜坡函数发生器

速度到达窗口

设置参数 p29078 以便于控制环确定以下面板上的设定速度是否到达:

4.2.3.3 位置设定值

位置设定值

在外部脉冲位置控制模式下,可选择一个信号链接到脉冲输入:
 信号类型选择

详细信息请参见章节"脉冲输入(PTIs)(页 86)"。

内部设定值位置控制模式下,必须在以下面板上设置位置设定值:

		位置(LU) p2617[0~7]		速度	加速度	减速度				
\odot	线性轴	增量式	•	(1000LU/min) p2618[0~7]	(1000LU/s*2) p2572	1000LU/s*2) p2573	P	053	POS2	POS1
	1		0	- 600-			ſ	0	0	0
			0	600			Н	0	0	1
			0	600-			н	0	1	0
0	模态轴		0	600-	100	100	н	0	্য	্য
	模态范围		0	600	100	100-	Н	1	Q	0
	360000 LU		0	- 600-			н	1	0	1
	TANA	-	0	600			н	1	া	0
	KKK .		0	600			4	1	1	1
		当前生效的位置	宜设 3	定值通道是:	0					

可根据实际情况使用线性轴或模态轴。

- 线性轴有限定的运行范围,为 SINAMICS V90 伺服驱动的出厂设置。
- 模态轴没有限定的运行范围。

可直接在输入框中输入以下参数的数值:

- 位置

- 速度
- 加速度
- 减速度

当前激活的位置设定值通道在面板下方显示。这些通道与 p2617 和 p2618 的对应关系 如下:

位置设定值通道	p2617 的下标	p2618 的下标
0	0	0
1	1	1
2	2	2
3	3	3
4	4	4
5	5	5
6	6	6
7	7	7

内部位置设定值的源

共计八个位置设定值可用。每一位置设定值可从一组位置数据获得:

内部位置设定值	相关参数	
	参数	描述
内部位置设定值 1	p2617[0]	内部位置设定值 1(P_pos1)
	p2618[0]	内部位置设定值1的速度(P_pos_spd1)
	p2572	IPos 最大加速度
	p2573	IPos 最大减速度
内部位置设定值 2	p2617[1]	内部位置设定值 2(P_pos2)
	p2618[1]	内部位置设定值 2 的速度(P_pos_spd2)
	p2572	IPos 最大加速度
	p2573	IPos 最大减速度

内部位置设定值	相关参数	
	参数	描述
内部位置设定值3	p2617[2]	内部位置设定值 3(P_pos3)
	p2618[2]	内部位置设定值 3 的速度(P_pos_spd3)
	p2572	IPos 最大加速度
	p2573	IPos 最大减速度
内部位置设定值4	p2617[3]	内部位置设定值4(P_pos4)
	p2618[3]	内部位置设定值4的速度(P_pos_spd4)
	p2572	IPos 最大加速度
	p2573	IPos 最大减速度
内部位置设定值5	p2617[4]	内部位置设定值 5(P_pos5)
	p2618[4]	内部位置设定值 5 的速度(P_pos_spd5)
	p2572	IPos 最大加速度
	p2573	IPos 最大减速度
内部位置设定值6	p2617[5]	内部位置设定值 6(P_pos6)
	p2618[5]	内部位置设定值 6 的速度(P_pos_spd6)
	p2572	IPos 最大加速度
	p2573	IPos 最大减速度
内部位置设定值7	p2617[6]	内部位置设定值7(P_pos7)
	p2618[6]	内部位置设定值7的速度(P_pos_spd7)
	p2572	IPos 最大加速度
	p2573	IPos 最大减速度
内部位置设定值8	p2617[7]	内部位置设定值 8(P_pos8)
	p2618[7]	内部位置设定值 8 的速度(P_pos_spd8)
	p2572	IPos 最大加速度
	p2573	IPos 最大减速度

位置设定平滑时间设置

平滑功能可使脉冲输入设定值的位置曲线转换成带 p2533 中指定的时间常数的 S 曲线轮廓。

位置到达窗口设置

设置参数 p2544 以便于控制环确定以下面板上的设定位置是否到达:

有关信号 INP 的更多信息,请参见章节"数字量输出(DOs)(页 81)"。

4.2.4 设置极限值

可使用该功能设置速度限制、扭矩限制和软限位。以下子功能因所选控制模式不同而有 所区别:

功能	控制模式				
	PTI	IPos	S	Т	
扭矩限制 (页 57)	1	1	\checkmark		
总体扭矩限制	1	\checkmark	\checkmark	\checkmark	
速度限制 (页 59)	1	\checkmark	\checkmark	\checkmark	
总体速度限制	1	\checkmark	\checkmark	\checkmark	
软限位 (页 67)		1			

4.2.4.1 扭矩限制

扭矩限制可用于 PTI, IPos 和 S 控制模式。

可在以下面板上设置相关参数:

扭矩设定值的源

共计四个源可用于扭矩限制。可通过数字量输入信号组合 TLIM1 和 TLIM2 选择其一:

数字量信号		扭矩限制
TLIM2	TLIM1	
0	0	内部扭矩限制 1
0	1	外部扭矩限制(模拟量输入 2)
1	0	内部扭矩限制 2
1	1	内部扭矩限制 3

扭矩设定值达到扭矩限制时, 扭矩受到 TLIM1/TLIM2 选定值的限制。

说明

控制模式

这四个源在 PTI 模式, IPos 模式和 S 模式下可用。 伺服驱动运行时可在上述模式间切换。

有关数字量输入信号 TLIM1 和 TLIM2 的更多信息,请参见章节"数字量输入 (DIs) (页 76)"。

总体扭矩限制

除上述四个源外,总体扭矩限制在**所有**控制模式下都可用。总体扭矩限制在急停 (OFF3) 发生时生效。在此情况下,伺服驱动以最大扭矩抱闸。

4.2.4.2 速度限制

可在以下面板上设置相关参数:

速度设定值的源

总共有四个源可用于速度限制。 可通过数字量输入信号组合 SLIM1 和 SLIM2 选择其一:

数字量信号		速度限制
SLIM2	SLIM1	
0	0	内部速度限制 1
0	1	外部速度限制(模拟量输入1)
1	0	内部速度限制 2
1	1	内部速度限制 3

说明

控制模式

以上四个信号源在所有控制模式下有效。伺服驱动运行时您可在上述模式间切换。

当速度设定值达到速度限制时,报警发生。

有关数字量输入信号 SLIM1 和 SLIM2 的更多信息,请参见章节"数字量输入 (DIs) (页 76)"。

总体速度限制

除这四个通道外,总体速度限制在所有控制模式下都可用。

4.2.5 配置输入/输出

共计三个子功能如下:

- 分配数字量输入(页 60)
- 分配数字量输出(页 61)
- 分配模拟量输出 (页 62)

4.2.5.1 分配数字量输入

可在以下面板上分配数字量输入:

教字量输入	数字量输出	模拟量输出								
地口										强制置 1
SON	分配									
RESET		分配								
CWL			分配							10
CCWL				分配						. 8
G_CHA					分配					
CLR						分配				
EGEAR1										
EGEAR2										
TLIM1							分配			
TLIM2										
SLIM1										
SLIM2										
EMGS								分配		
C_MODE									分配。	

共计 28 个信号可自由分配到数字量输入,但 DI9 和 DI10 必须分别链到信号 E_Stop 和 C_Mode。更多信息请参见章节 "数字量输入 (DIs) (页 76)"。

点击表中带白色背景的单元格。下拉列表中会显示两个选项:分配和取消。选择"分配"将数字量输入链到对应信号。当前行显示灰色。否则,选择"取消"解除链接。当前行显示白色。

可激活"强制置 1"列将信号状态强制置 1。对于信号 EMGS,仅可在驱动固件版本为 V1.04.00 及更高版本时强制置 1。

说明

在 PTI 模式下的 P_TRG 信号留作将来使用。

4.2.5.2 分配数字量输出

可在以下面板上分配数字量输出:

数字量输入 数字量输出 模拟量输出						
端口						
RDY	分配					
FAULT		分配				
INP			分配			
ZSP						
TLR					分配	
SPLR						
MBR						分配
OLL						
WARNING1						
WARNING2						
REFOK						
CM_STA						
RDY_ON						

共计 14 个信号可被自由分配到数字量输出。更多信息请参见数字量输出(DOs) (页 81)。

点击表中带白色背景的单元格。选择**"分配"**将数字量输入链到对应信号。当前单元格显示 灰色。

说明

DO 信号取反

数字量输出信号 DO1 至 DO 6 的逻辑可以被取反。可以通过参数 p0748 的位 0 至 位 5 对信号 DO1 至 DO 6 的逻辑进行取反。

4.2.5.3 分配模拟量输出

可在以下面板上分配模拟量输出:

共计七个信号可链到任意模拟量输出。更多信息请参见章节"模拟量输出(AOs) (页 85)"。

默认状态下,模拟量输出1和模拟量输出2分别链到实际速度和实际扭矩。您可在下拉列表中任意选择目标信号链到模拟量输出。

4.2.6 配置回零参数

回参考点仅用于内部设定值位置控制模式(IPos)。 回参考点有两个子功能:

- 设置回参考点 (页 63)
- 设置软限位 (页 67)

4.2.6.1 设置回参考点

设置回参考点功能仅用于在线模式。

• 增量编码器

若电机带增量编码器,共计五种回参考点模式可用:

以第二种回参考点模式为例,您可以在下面的面板上配置相关的参数:

分配信号 REF 和 SREF (更多信息请参见"配置输入/输出 (页 60)")。点击

点击 确定 开始回参考点,以下窗口出现:

等待回参考点完成			
注意: 驱动正在回参考点。您可	[]以等待回参考点完成,	或者停止回参考点!	
停止回参考点			

点击以下按钮可停止回参考点进程。

停止回参考点

• 绝对编码器

若电机带绝对编码器,共计五种回参考点模式可用。您可以通过 Modbus 或者外部 DI 端子进行回参考点操作,不能使用 V-ASSISTANT 回参考点。

也可以点击下面面板上的 设置回参考点 来调整绝对值编码器(将当前位置设为零 位)从而配置回参考点:

기르기	13×4 H	
	设置回参考点	
	绝对值校准状态 绝对值编码器未校准	
	参考点坐标值	
	0	

说明

绝对编码器回参考点模式

如连接绝对编码器,五种回参考点模式可用。可以通过参数 p29240 选择不同的回参考点模式。当 p29240 = 1 至 4 时,回参考点仅可在设置当前位置为零位之前进行。一旦零位被设定,该四种回参考点模式将不再生效。

4.2.6.2 设置软限位

以下两个软限位在内部设定值位置控制模式(IPos)下可用:

- 正向软限位值
- 负限位

说明

软限位功能仅在回参考点后生效。实际位置到达上述软限位时,电机速度减速至0。

可在以下面板上设置软限位功能:

设置	软限位					
	🗌 使能望	软限位				
		伺服使能				
	速度	100	rpm	C	C	
	速度		0 rpm	位置		O LU
	正向软限	位值		负向软	次限位值	
	13	使用当前位置			使用当前位置	
		214748	2647 LU			-24 LU

方法 1: 通过手动输入设置

点击复选框使能软限位。在底部输入区中直接键入所需的值。

		1.	点击复选框使能软限位。
		2.	输入速度值。
			说明:
			Jog 速度不应过快。 否则,可能因为通信延迟导致机床轴失控。
	伺服使能 [3.	点击此按钮执行伺服使能,会出现以下警告消息。 在以下消
			息窗口中点击 <mark>确定 确认您的选择。</mark>
C		4.	点击该按钮可顺时针旋转电机,电机达到最大位置。
	使用当前位置	5.	可通过点击该按钮获得当前位置。
5		6.	点击该按钮可逆时针旋转电机,电机到达最小位置。
	使用当前位置	7.	可通过点击该按钮获得当前位置。
	伺服关使能 [8.	如需禁止该功能,可点击该按钮及复选框。

说明

设置软限位的前提:

- 回参考点执行成功
- 线性轴工作模式已选

方法 2: 通过 Jog 功能设置

4.2.7 设置编码器脉冲输出

SINAMICS V-ASSISTANT 以位置控制模式 (PTI 和 IPos) 工作时,可在以下面板上配置 脉冲输出:

编码器 编码器	器类型: 器分辨率:	增量式 2048 ppr		
•	设置电机转一圈 p29030	脉冲输出的数量 1000		
0	根据电子齿轮比 电子齿轮比 =	设置脉冲输出数量 1	p29031 p29032	电子齿轮比的范围是0.02~200.

SINAMICS V-ASSISTANT 自动识别编码器类型及分辨率。

共计两个选项可进行相关参数的配置:

- 设置电机转一圈的 PTO 数量
- 根据齿轮比设置 PTO 数量

4.2.8 反向间隙补偿

一般来说,机械力在机械部件和其驱动间传递时,反向间隙产生:

如要调整/设计机械系统以完全消除反向间隙,可能导致高磨损。因此,反向间隙可在机 械组件和编码器之间出现。对于带间接位置传感的轴来说,机械反向间隙会导致错误的 运行距离,因为反向时轴会相对于反向间隙的绝对值运行得过远或不够远。

可在以下面板上配置反向间隙补偿:

为补偿反向间隙,所确定的反向间隙及正确的极性必须在 p2583 中确定。每次旋转反向时,轴实际值需根据实际运行方向修正。

说明

反向间隙补偿使能的前提

反向间隙补偿激活的前提是

- 轴已在增量测量系统中回参考点。有关回参考点的详细信息,请参见章节"设置回参考 点(页 63)"。
- 轴已在绝对测量系统中调整。

4.2.9 查看所有参数

可在该区域配置所有可编辑的参数:

组别过滤器	· 所有参数 •	搜索:	•		出厂值 伢	保存更改		
鉭	参数号	参数信息	值	单位	值范围	出厂设置	生效方式	
基本	p29000	电机 ID	18	N.A.	[0, 54251]	0	立即生效	
基本	p29001	电机旋转方向取反	0:方向・	• N.A.		0	立即生效	
基本	p29002	BOP 显示选择	0:速度 •	N.A.		0	立即生效	Ξ
基本	p29003	控制模式	0 : PTI •	• N.A.		0	重启生效	
基本	p29004	RS485 地址	1	N.A.	[1,31]	1	重启生效	
基本	p29005	制动电阻容量百分比报警	100.000	%	[1, 100]	100	立即生效	
基本	p29006	电源电压	400	V	[380, 480]	400	立即生效	
基本	p29007	RS485 通信协议	1 : USS •	• N.A.		1	重启生效	
基本	p29008 🕕	Modbus 控制模式	2:无控・	N.A.		2	重启生效	
基本	p29009	RS485 波特率	8:38400 •	• N.A.		8	重启生效	
基本	p29010	PTI:选择输入脉冲形式	0:PD_P •	N.A.		0	立即生效	
基本	p29011	PTI: 每转设定线数	0	N.A.	[0, 16777215]	0	立即生效	
基本	p29012[0]	PTI:电子齿轮分子:PTI	1	N.A.	[1, 10000]	1	立即生效	
基本	p29012[1]	PTI:电子齿轮分子:PTI	1	N.A.	[1, 10000]	1	立即生效	
基本	p29012[2]	PTI:电子齿轮分子:PTI	1	N.A.	[1, 10000]	1	立即生效	
基本	p29012[3]	PTI:电子齿轮分子:PTI	1	N.A.	[1, 10000]	1	立即生效	
基本	p29013	PTI:电子齿轮分母	1	N.A.	[1, 10000]	1	立即生效	
基本	p29014	PTI:选择脉冲输入电平	1:24V ·	N.A.		1	立即生效	
基本	p29016	PTI:脉冲输入滤波器	0 : PTI •	• N.A.		0	立即生效	
基本	p29019	RS485 监控时间	0.000	ms	[0, 2000000]	0	立即生效	
基本	p29020[0]	优化:动态系数:一键自	18	N.A.	[1,35]	18	立即生效	
基本	p29020[1]	优化:动态系数:实时自	18	N.A.	[1,35]	18	立即生效	
基本	p29021	优化:模式选择	0:禁用・	• N.A.		0	立即生效	
基本	p29022	优化:总惯量与电机惯量	1.000	N.A.	[1, 10000]	1	立即生效	
基本	p29023	优化:OBT 配置	7	N.A.		7	立即生效	
基本	p29024	优化:RTT 配置	76	N.A.		76	立即生效	
基本	p29025	优化:通用配置	4	N.A.		4	立即生效	
基本	p29026	优化:测试信号持续时间	2000	ms	[0, 5000]	2000	立即生效	
基本	p29027	优化:电机旋转角度限制	0	N.A.	[0,3000]	0	立即生效	
基本	p29028	优化:前馈时间常数	7.500	ms	[0,60]	7.5	立即生效	
基本	p29030	PTO: 每转线数	1000	N.A.	[0, 16384]	1000	立即生效	
基本	p29031	PTO:电子齿轮分子	1	N.A.	[1, 2147000000]	1	立即生效	
基本	p29032	PTO:电子齿轮分母	1	N.A.	[1, 2147000000]	1	立即生效	
基本	p29033	PTO 方向	0 : PTO •	N.A.		0	立即生效	
基本	p29035	VIBSUP 激活	0∶禁用 ·	N.A.		0	立即生效	
基本	p29041[0]	扭矩定标: 扭矩设定值定标	100.000	%	[0, 300]	100	立即生效	
₩ - ↓ -	-00044141	4m Access4-5 + 4m Acc00 Atces4-5	000 000	0/	10 0001	000		

说明

表中带有 **f** 图标的参数表示该参数在 Modbus 通信功能中使用。您可以点击该图标来查 看关于通信功能的更多信息。

字段	描述
组别过滤 器	根据不同组别查看参数。
搜索	输入所需文本后,过滤完成。
出厂设置	可以点击下面的按钮将所有参数复位至出厂设置: 出厂值 更多信息请参见章节"工具 -> 出厂设置 (页 28)"。
保存更改	您可点击以下按钮将不同于默认/出厂设置的更改保存为.html 格式的文件, 以便用于文档或者用作 BOP 调试的参考文件。 保存更改 在以下窗口中保存:
	Organize ▼ New folder Organize ▼ New folder
	★ Favorites ▲ ■ Desktop ▶ Export_Parameters_files 1/28/2015 4:08 PM File folder ● Downloads ● Export_Parameters.html 2/26/2014 9:01 AM HTML Docur ● Libraries ● Documents ● ● ● ● ● ● Pictures ● Videos ● <
	File name: Export_Parameters.html
	 ①: 默认位置是: xxx/Siemens/V-ASSISTANT/Project。 xxx: SINAMICS V-ASSISTANT 设置根目录 ②: 仅.html 格式可用。

字段	描述
表格	所有参数的以下信息会显示:
	• 组
	• 参数号
	 名称
	• 值
	• 单位
	• 范围
	• 出厂设置
	• 生效方式
	说明:
	在值相关列,背景为白色的值都可编辑。
- 4.3 调试
- 4.3.1 测试接口

4.3.1.1 I/O 仿真

SINAMICS V-ASSISTANT 以在线模式工作时,可在以下面板上查看 I/O 状态:

区域	项目	描述			
1	脉冲输入	脉冲输入的信息: 接收到的脉冲数。 脉冲频率。 更多信息请参见章节"脉冲输入(PTIs) 			
2	DI1~DI8	每个数字量输入可链到 28 个内部信号中的任意一个。			
	DI9	链到 EMGS 信号。			
	DI10	链到 C_MODE 信号。			
	·说明 :				
	更多关于信号数量及定义的信息	,,请参见章节"数字量输入 (Dls) (页 76)"。			
3	Al1	链到速度相关信号。			
	AI2	链到扭矩相关信号。			
	说明: 关于模拟量输入的更多信息,请	「参见章节"模拟量输入(Als) (页 84)"。			
4	AO1	默认链到实际速度信号。			
	AO2	默认链到实际扭矩信号。			
	说明: 更多信息请参见章节"模拟量输出(AOs)(页 85)"。				
5	DO1~DO6	每个数字量输入可链到 12 个内部信号中的任意一个。更多信息请参见章节"数字量输出(DOs) (页 81)"。			
6	使能DO仿真 📃	点击该按钮可使能 DO 仿真。如需禁止该功能,可点击以下按钮: 禁止DO仿真			

7		信号已激活	表示该数字量输入/输出上为高电压(或逻辑 1)。
		信号未激活	表示该数字量输入/输出上为低电压(或逻辑 0)。
) Servo_On	信号被强制置 1	表明被分配的信号状态为强制置 1。

说明

- 该功能在离线模式下不可用但可以显示。
- 每个指示灯和模拟量值的状态每 0.5 s 更新一次。
- 在 PTI 模式下的 P_TRG 信号留作将来使用。
- 可根据需要更改信号链接。更多信息请参见章节"配置输入/输出 (页 60)"。

DI 信号状态

您可在以下面板上查看各个 DI 信号的名称, 描述, 值以及状态:

		佳利置1		
SON	個職开启	0	0	
RESET	第位根据	0	0	
CWL.	顺时针缀行程限制 (正限)	0	0	
CCWL	逆时针超行程限制(负限)	0	0	
G_CHANGE	在第一个和第二个增益参数集之间进行增益切换	0	0	
P_TRG	在PTI模式下。脉冲允许/梁止	0	0	
CLR	清除位置控制导统脉冲	0	0	
EGEAR1	电子齿轮1	0	0	
EGEAR2	电子齿轮2	0	0	
TLM1	选择担矩限制1	0	0	
TLIM2	选择把矩限制2	0	0	
CWE	使能顺时针键转	0	0	
COWE	使能逆时针旋转	0	0	
2SCLAMP	零連钳位	0	0	
SPD1	选择速度模式: 内部速度设定值1	0	0	
SPD2	选择追思模式,内部遮度设定值2	0	0	
SPD3	选择速度模式,内部速度设定值3	0	0	
TSET	选择把拒没定值	0	0	
SLM1	选择演成限制1	0	0	
SLIM2	选择速度限制2	0	0	
POS1	选择位置设定值1	0	0	
POS2	选择位置设定值2	0	0	
POS3	选择位置设定值3	0	0	
REF	通过数字重输入或参考指块输入设置回参考点 方式下的零点	0	0	
SREF	通过信号 SREF 开始回参考点	0	0	
STEPF	移至下一内部位置	0	0	
STEPB	回到上一内部位置	0	0	
STEPH	移至内部位置1	0	0	
E_STOP	急停	0	0	
C_MODE	切换模式	0	0	

4.3.1.2 数字量输入(Dls)

总共可分配 28 个内部数字量输入信号到 SINAMICS V90 伺服驱动。关于这些信号的详细 信息,请参见下表:

编	名称	类型	描述	控制模	 支		
号				PTI	IPos	S	Т
1	SON	边沿	伺服开启	\checkmark	1	\checkmark	1
		0→1	 0→1:接通电源电路,使伺服驱 				
		1→0	动准备就绪。				
			• 1→0: 电机在 PTI、IPos 和 S 模				
			式下,斜坡下降(OFF1);在				
			Ⅰ 模式下, 顶性日田停牛 (OFF2).				
2	RESET	边沿	复位报擎	1	1	1	1
		~ <u>~</u> 1⊓ 0→1	 O→1:复位报警 		•		•
3	CWL	边沿	顺时针超行程限制(正限)	✓	✓	✓	✓
		1→0	 1 = 运行条件 				
			• 1→0: 急停(OFF3)				
4	CCWL	边沿	逆时针超行程限制(负限位)。	~	~	~	✓
		1→0	 1 = 运行条件 				
			• 1→0: 急停(OFF3)				
5	G-	电平	在第一个和第二个增益参数集之间	\checkmark	1	\checkmark	х
	CHANGE		进行增益切换。				
			• 0: 第一个增益参数集				
			• 1: 第二个增益参数集				
6	P-TRG	电平	在 PTI 模式下:脉冲允许/禁止。	\checkmark	1	х	х
	(P_TRG	边沿	• 0: 允许通过脉冲设定值运行				
	在 PTI 模	0→1	• 1: 禁止脉冲设定值				
	式下留作		在 IPos 模式下:位置触发器				
	府木便 用)		• 0→1: 根据已选的内部位置设定 值开始定位				

编	名称	类型	描述	控制体	美式		
号				PTI	IPos	S	Т
7	CLR	电平	清除位置控制剩余脉冲。	1	х	х	х
			• 0: 不清除				
			 1:根据 p29242 设置的模式清 除脉冲 				
8	EGEAR1	电平	电子齿轮。	1	1	х	х
9	EGEAR2	电平	通过 EGEAR1 和 EGEAR2 信号组 合可以选择四组电子齿轮比。	✓	✓	х	х
			EGEAR2 :EGEAR1				
			• 0:0: 电子齿轮比 1				
			 0:1: 电子齿轮比 2 				
			• 1:0: 电子齿轮比 3				
			• 1:1:电子齿轮比 4				
10	TLIM1	电平	选择扭矩限制。	1	1	1	х
11	TLIM2	电平	通过 TLIM1 和 TLIM2 信号组合可 以选择四个扭矩限制指令源(一个 外部扭矩限制,三个内部扭矩限 制)。 TLIM2:TLIM1 • 0:0:内部扭矩限制 1 • 0:1:外部扭矩限制(模拟量输 入2) • 1:0:内部扭矩限制2 • 1:1.内部扭矩限制3				
40		는 교		X	X		
12	CVVE	电半	────────────────────────────────────	X	X	~	~
			 ①: 禁止顺时针旋转. 斜坡下降 				
13	CCWF	由平	使能逆时针旋转。	x	x	5	5
	50ML		● 1 . 使能顺时针旋转. 斜坡下降				
			 0: 禁止顺时针旋转,斜坡上升 				

编	名称	类型	描述	控制模	 支		
号				PTI	IPos	S	Т
14	ZSCLAM P	电平	 零速钳位。 1=当电机速度设定值为模拟量 信号且小于阈值(p29075) 时,电机停止并抱闸。 0=无动作 	X	x	√	x
15	SPD1	电平	选择速度模式: 内部速度设定值。	х	х	1	х
16	SPD2	电平	通过 SPD1、SPD2 和 SPD3 信号				
17	SPD3	电平	 组合可以选择八个速度设定值源 (一个外部速度设定值,七个内部 速度设定值)。 SPD3:SPD2:SPD1 0:0:0:外部模拟量速度设定 值 0:0:1:内部速度设定值1 0:1:0:内部速度设定值2 0:1:1:内部速度设定值3 1:0:0:内部速度设定值4 1:0:1:内部速度设定值5 1:1:0:内部速度设定值6 1:1:1:内部速度设定值7 				
18	TSET	电平	选择扭矩设定值。 该信号可以选择两个扭矩设定值源 (一个外部扭矩设定值,一个内部 扭矩设定值)。 • 0:外部扭矩设定值(模拟量输 入2) • 1:内部扭矩设定值	×	×	×	✓

编	名称	类型	描述	控制模			
号				PTI	IPos	S	Т
19	SLIM1	电平	选择速度限制。	1	1	1	\checkmark
20	SLIM2	电平	通过 SLIM1 和 SLIM2 信号组合可 以选择四个速度限制指令源(一个 外部速度限制,三个内部速度限 制)。 SLIM2:SLIM1 • 0:0:内部速度限制 1 • 0:1:外部速度限制(模拟量输 入1) • 1:0:内部速度限制2 • 1:1:内部速度限制2				
21	POS1	电平	选择位置设定值。	х	✓	х	х
22	POS2	电平	通过 POS1 至 POS3 信号组合可以				
23	POS3	电平	选择八个内部位置设定值源。 POS3:POS2:POS1 • 0:0:0:内部位置设定值1 • 0:0:1:内部位置设定值2 • 0:1:0:内部位置设定值3 • 0:1:1:内部位置设定值4 • 1:0:0:内部位置设定值5 • 1:0:1:内部位置设定值6 • 1:1:0:内部位置设定值7 • 1:1:1:内部位置设定值8				
24	REF	边沿 0→1	通过数字量输入或参考挡块输入设 置回参考点模式下的参考点。 • 0→1:参考点输入	х	1	x	Х
25	SREF	边沿 0→1	通过信号 SREF 开始回参考点。 ● 0→1 开始回参考点	х	~	х	х
26	STEPF	边沿 0→1	向前位进至下一个内部位置设定 值。 ● 0→1 开始位进	х	1	x	х

编	名称	类型	描述		控制模式			
号				PTI	IPos	S	Т	
27	STEPB	边沿	向后位进至上一个内部位置设定	Х	1	Х	х	
		0→1	值。					
			 0→1 开始位进 					
28	STEPH	边沿	位进至内部位置设定值 1。	х	1	х	х	
		0→1	 0→1 开始位进 					

说明

以扭矩控制模式工作时,如 CWE 和 CCWE 处于相同状态,则扭矩设定值等于 0。更多 信息可参见 SINAMICS V90, SIMOTICS S-1FL6 操作说明。

说明

DI 信号无效的情形

- 当 SINAMICS V-ASSISTANT 正在和驱动进行通信或在 SINAMICS V-ASSISTANT 上 对驱动进行操作时,一些 DI 信号失效:
 - 当通过 SINAMICS V-ASSISTANT 回参考点时, DI 信号 SREF 无效。
 - 在试运行测试时, DI 信号 SON 无效;并且, SINAMICS V-ASSISTANT 使用 DI7 和 DI8 信号。

直接信号映射

通过设置参数 p29300 (P_DI_Mat) 可将下列六个信号置为逻辑"1":

- SON
- CWL
- CCWL
- TLIM1
- SPD1
- TSET
- EMGS

参数 p29300 的定义如下:

位 6	位 5	位 4	位 3	位 2	位 1	位 0
EMGS	TSET	SPD1	TLIM1	CCWL	CWL	SON

例如,设 p29300 = 1 可将 SON 信号置为高电位, DI1 即可分配到其他信号。

说明

参数 p29300 的优先级高于 DI。

p29300的位6用于设置急停。当驱动处于伺服开启状态时,不允许改变其状态。

4.3.1.3 数字量输出(DOs)

最多可分配 13 个内部数字量输出信号至 SINAMICS V90 伺服驱动。关于这些信号的详细 信息,请参见下表:

编号	名称	说明	控制模	试		
			PTI	IPos	S	Т
1	RDY	伺服准备就绪	1	\checkmark	1	1
		 1: 准备就绪 				
		 0: 驱动未准备就绪(发生报警或使 能信号丢失) 				
2	FAULT	故障	\checkmark	\checkmark	1	1
		• 1: 处于故障状态				
		• 0: 无故障				
3	INP	位置到达信号	\checkmark	\checkmark	x	х
		 1:剩余脉冲数在预设的位置到达范围内(参数 p2544) 				
		• 0: 剩余脉冲超出位置到达范围				
4	ZSP	零速检测	\checkmark	\checkmark	1	1
		 1: 电机速度等于或小于零速(可通 过参数 p2161 设置零速)。 				
		 0: 电机速度大于零速 + 磁滞(10 rpm)。 				

编号	名称	说明	控制模式				
			PTI	IPos	S	Т	
5	SPDR	 速度达到 1: 电机实际速度已几乎(内部磁滞 10 rpm)达到内部速度指令或模拟 量速度指令的速度值。速度到达范围 可通过参数 p29078 设置。 0: 速度设定值与实际值之间的速度 差值大于内部磁滞。 	x	x	✓	x	
6	TLR	达到扭矩限制 1:产生的扭矩已几乎(内部磁滞) 达到正向扭矩限制、负向扭矩限制或 模拟量扭矩限制的扭矩值 0:产生的扭矩尚未达到限制 	✓	✓	✓	x	
7	SPLR	达到速度限制 1:速度几乎(内部磁滞, 10 rpm) 达到速度限制。 • 0:速度尚未达到速度限制。	~	~	~	х	
8	MBR	电机抱闸 1: 电机停机抱闸关闭 0: 电机停机抱闸打开 说明: MBR 仅为状态信号,因为电机 停机抱闸的控制与供电均通过特定的端子实现。 	√	✓	✓ 	~	
9	OLL	达到过载水平 1: 电机已达到设定的输出过载水平 (p29080 以额定扭矩的 % 表示, 默认值: 100%,最大值: 300%) 0: 电机尚未达到过载电平 	✓	✓	✓	✓	
10	WARNIN G1	达到警告 1 条件 1: 已达到可设置的警告 1 的条件。 0: 未达到警告 1 的条件。 见下文说明。 	~	~	✓	~	

编号	名称	说明	控制模	试		
				IPos	S	Т
11	WARNIN	达到警告 2 条件	✓	1	\checkmark	~
	G2	• 1: 已达到可设置的警告 2 的条件				
		 0:未达到警告2的条件。 				
		见下文说明				
12	REFOK	回参考点	х	1	х	х
		 ● 1 = 已回参考点 				
		 0=未回参考点 				
13	CM_STA	当前控制模式	1	1	1	\checkmark
		 ● 1 = 五个复合控制模式(PTI/S, 				
		IPos/S, PTI/T, IPos/T, S/T)的第二				
		个模式				
		• 0 = 五个复合控制模式 (PTI/S,				
		IPos/S, PTI/T, IPos/T, S/T) 或四个				
		▲ 本 楔 式 (P Π, IPOS, S, I) 的 弗一				
14		准冬伺服开启就线	1	1	./	
		• 1. 准冬伺服开启前线	v	ľ	ľ	•
		• 0. 驱动准久伺服开启未计狭(方在				
		故障或主电源无供电)				
		说明: 当驱动处于伺服开启状态后, 该				
		信号会一直保持为1状态除非出现上述				
		异常情况。				

分配警告信号至数字量输出

您可将两组警告信号通过参数 p29340 (第一组警告信号生效)和 p29341 (第二组警告 信号生效)分配至数字量输出。

设置(p29340/p29341)	警告条件
1	过载保护:负载系数大于或等于电机利用率的85%。
2	制动电阻:制动电阻的容量大于或等于电阻额定功率的 85%。
3	风扇报警:风扇已停转1秒以上。
4	编码器报警
5	电机过热: 电机温度已达到允许的最大电机温度的 85%。
6	使用寿命检测: 电容或风扇的预期使用寿命小于指定时间。

如果分配至 p29340 的警告条件发生,则信号 WARNING1 激活。

如果分配至 p29341 的警告条件发生,则信号 WARNING2 激活。

4.3.1.4 模拟量输入(Als)

共计两个模拟量输入可用:

- Al1: 链到速度相关信号。
- Al2: 链到扭矩相关信号。

在不同控制模式下,模拟量输入可链到不同信号:

控制模式	Al1	Al2	
位置模式(PTI 和 IPos)	未使用	扭矩限制	
S	速度设定值	扭矩限制	
Т	速度限制	扭矩设定值	
PTI/S and IPos/S	在位置控制模式下未使用	扭矩限制	
	> S 模式下的速度设定值		
PTI/T and IPos/T	在位置控制模式下未使用	位置控制模式下的扭矩限制	
	>T模式下的速度限制	>T 模式下的扭矩设定值	
S/T	> S 模式下的速度设定值	> S 模式下的扭矩限制	
	>T模式下的速度限制	>T模式下的扭矩设定值	

4.3.1.5 模拟量输出(AOs)

通过 p29350(选择 AO1 的信号源)和 p29351(选择 AO2 的信号源)这两个参数可选择模拟量输出的指令源:

参数	值	指令源	值	指令源
p29350	0 (默 认值)	实际速度(参考值 p29060)	7	脉冲输入频率(参考值 100 k)
	1	实际扭矩(参考值 3 x r0333)	8	脉冲输入频率(参考值 1000 k)
	2	速度设定值(参考值 p29060)	9	剩余脉冲数(参考值1k)
	3	扭矩设定值(参考值 3 x r0333)	10	剩余脉冲数(参考值 10 k)
	4	直流总线电压(参考值 1000 V)	11	剩余脉冲数(参考值 100 k)
	5	脉冲输入频率(参考值 1 k)	12	剩余脉冲数(参考值 1000 k)
	6	脉冲输入频率(参考值 10 k)		
p29351	0	实际速度(参考值 p29060)	7	脉冲输入频率(参考值 100 k)
	1 (默 认值)	实际扭矩(参考值 3 x r0333)	8	脉冲输入频率(参考值 1000 k)
	2	速度设定值(参考值 p29060)	9	剩余脉冲数(参考值1k)
	3	扭矩设定值(参考值 3 x r0333)	10	剩余脉冲数(参考值 10 k)
	4	直流总线电压(参考值 1000 V)	11	剩余脉冲数(参考值 100 k)
	5	脉冲输入频率(参考值 1 k)	12	剩余脉冲数(参考值 1000 k)
	6	脉冲输入频率(参考值 10 k)		

4.3.1.6 脉冲输入(PTIs)

SINAMICS V90 伺服驱动支持两种设定值脉冲输入形式:

- AB 相脉冲
- 脉冲+方向

两种形式都支持正逻辑和负逻辑:

脉冲输入	正逻辑=0		负逻辑 =1		
形式	正转指令(CW)	反转指令 (CCW)	正转指令(CW)	反转指令 (CCW)	
AB 相脉		Į III		ίπτ	
狎	в	Įuu	в		
脉冲 + 方 向			脉冲		
		─	方向 ————	/	

4.3.1.7 编码器信号输出(PTOs)

功能

编码器信号输出(PTO)可将脉冲信号发送至上位控制器以在上位控制器内部实现闭环控制系统或将脉冲信号发送至另一个驱动作为同步轴的脉冲设定值。

4.3.2 测试电机

共计两个子功能:

- Jog (页 86)
- 位置试运行 (页 87)

4.3.2.1 Jog

关于 Jog 的详细信息,请参见章节"Jog (页 43)"。

4.3.2.2 位置试运行

Jog 位置试运行	
Jog	
请先使用Jog功能设置位置试运 伺服使能	行的最大位置和最小位置。
Jog速度 0 0	rpm 🕤 C
实际速度 0.000	rpm 实际位置 -27890 LU
最小限位	最大限位
设置限位	
最小位置	最大位置
使用当前位置	使用当前位置
0	
位置移动	
请失信田 looth 教设置起始位署	1
移动距离	100000 LU
移动速度	300 1000LU/min

在线模式下,您可在以下面板上配置该功能:

说明

位置试运行仅用于位置控制模式(PTI 和 IPos)。

操作步骤

		1.	输入 Jog 速度。
	伺服使能 📃	2.	使用该按钮可使能 Jog 功能。
			说明:
			点击此按钮,会出现警告消息。 在消息窗口中点击 确定 确认执行伺服使能。
C		3.	点击该按钮可顺时针旋转电机,电机达到最大位置。
	使用当前位置	4.	点击面板右侧的该按钮可以获得最大位置。
5		5.	点击该按钮可逆时针旋转电机,电机到达最小位置。
	使用当前位置	6.	点击面板左侧的该按钮可以获得最小位置。
			说明:
			确保实际位置在范围内。 否则,位置试运行无法启动。
	伺服关使能 📃	7.	使用该按钮可禁止 Jog 功能。
			说明:
			Jog 功能在位置试运行启动前必须禁止。
		8.	输入运动距离和运动速度。
	使能试运行	9.	点击该按钮可使能试运行功能。
		10.	点击该按钮开始试运行。或者,点击以下按钮停止试运行:
		11.	如有必要,点击该按钮返回上一位置。

4.3.3 优化驱动

在下面的面板中,您可以从下面的标签中选择目标优化方式。

优化参数 一键自动优化 实时自动优化

说明

一键自动优化模式在固件版本 V1.04.00 及更高版本中可用。

自动优化模式

SINAMICS V90 提供两种自动优化模式:一键自动优化和实时自动优化自动优化功能可 以通过机床负载惯量比(p29022)自动优化控制参数并设置合适的电流滤波器参数来抑 制机床的机械谐振。你可以通过设置不同的动态因子来改变系统的动态性能。

- 一键自动优化
 - 一键自动优化通过内部运动指令估算机床的负载惯量和机械特性。为达到期望的性能,在使用上位机控制驱动运行之前,你可以多次执行一键自动优化。电机最大转速为额定转速。
- 实时自动优化
 - 实时自动优化可以在上位机控制驱动运行时自动估算机床负载惯量。在驱动伺服使能(SON)后,实时自动优化功能一直有效。若不需要持续估算负载惯量,你可以在系统性能可接受后禁用该功能。

4.3.3.1 一键自动优化

说明

使用一键自动优化之前,将伺服电机移至机械位置中间来避免触碰机床实际限位。

使用一键自动优化,伺服驱动可以自动估算负载惯量比。

使用实时自动优化的前提

- 机床负载惯量比未知,需要进行估算。
- 电机在顺时针和逆时针方向上均可旋转。
- 电机旋转位置(p29027 定义一圈为 360 度)在机床允许的范围之内。
 - 对于带绝对值编码器的电机: 位置限制由 p29027 决定
 - 对于带增量编码器的电机: 在优化开始时必须允许电机有两圈的自由旋转

执行以下步骤来启用一键自动优化功能:

1. 在下面的区域中选择动态因子:

<u>动态系数</u> 1	用户调整的响应等级	

关于选择动态因子的更多信息,请参见 SINAMICS V90, SIMOTICS S-1FL6 操作说明中的"一键自动优化"章节。

2. 在下面的区域中配置内置信号:

说明:

推荐使用的位置幅值(p29027)为 360°。

3. 点击下面的按钮为一键自动优化配置参数。

高级设置

4. 在下面的窗口中设置参数:

四理明	加盟ないまでからう	12	121电中)	加速	12
Bit 1	一 设立行迷环墙盆 百水由浇设完值环滤波器参数	V V	Bit 1	高贝執持列版重示け下的PD控制器	() ()
Bit 2	激活/取消转动惯量评估器	V	Bit 2	员载自适应Kp	1
			Bit 3	速度前馈	
			Bit 4	扭矩前馈	Į.
			Bit 5	匹配最大加速度	Ī
Bit 7	多轴插补	171			

说明**:**

你可以通过以下方式来设置机床负载惯量比(p29022):

- 若已知机床的负载惯量比,可直接手动输入
- 通过一键自动优化功能来估算机床的负载惯量比(p29023.2 = 1)。在多次执行一键自动优化并得到稳定的 p29022 的值时,你可以设置 p29023.2 = 0 来停止估算机床的负载惯量比。

当多轴插补功能被激活(p29023.7 = 1)时,参数 p29028 可用。若有多个轴被用作插补轴,你需要为它们设置相同的前馈时间常数(p29028)。优化结束后,若它们的位置环增益(p29110[0])不用,则需要手动将他们设置为一个相同的值。 必须在自动优化功能禁用(p29021 = 0)时小心设置高级设置窗口中的参数。

5. 所有的参数设置完成后,点击下面的按钮来使能优化功能。

启动一键自动优化

6. 点击此按钮开始优化。

伺服使能 📃

参数号	参数信息		旧值	单位。
p29022	优化:总惯量与电机惯量之比	2.015	1.000	N.A.
p29110[0]	位置环增益:位置环增益0	3.021	1.800	1000/min
p29111	速度情系数(进给前馈)	0.000	0.000	%
p29120[0]	速度环增益:速度环增益0	1.375	0.688	Nms/rad
p29121[0]	速度环积分时间:速度环积分时间 0	12.513	15.000	ms
p1414	速度设定值滤波器激活	1	0	N.A.
p1415	速度设定值滤波器 1 类型	2	0	N.A.
p1417	速度设定值滤波器 1 分母固有频率	100.000	1999.000	Hz
p1418	速度设定值滤波器 1 分母衰减	0.900	0.700	N.A.
p1419	速度设定值滤波器 1 分子固有频率	100.000	1999.000	Hz
p1420	速度设定值滤波器 1 分子衰减	0.900	0.700	N.A.

7. 优化结束后,会显示优化结果窗口。

点击该按钮应用优化结果。

接受

点击该按钮放弃使用优化结果。

放弃

8. 在优化结束且驱动性能可接受时,将优化后的参数从 RAM 拷贝到 ROM 中。

说明

伺服使能后, 电机会按照内置信号波形运转。

当一键自动优化过程成功完成后,参数 p29021 会被自动设置为 0。你也可以在伺服使能 之前将 p29021 设置为 0 来中止一键自动优化。当在驱动中进行参数保存时,确保 p29021 已经更改为 0。

说明

当使用一键自动优化功能时,不允许使用 JOG 功能。

说明

在一键自动优化功能被激活后,除伺服关闭和急停外不允许进行其他操作。

说明

在激活一键自动优化之前,请勿修改任何自动优化相关的控制器/滤波器参数,因为系统可自动设置这些参数,而不会接受所作修改。

说明

一键自动优化可能使控制参数发生改变。系统刚性较低时,可能会导致当设置 EMGS = 0 时,电机急停需要较长的时间。

一键自动优化时的谐振抑制(p29021=1, p29023.1=1)

一键自动优化带有谐振抑制功能。该功能在默认情况处于激活状态。

也可以通过 p29023 的位 1 激活/禁用该功能。

在一键自动优化启用谐振抑制功能时,必须确保负载正确安装且伺服电机可以自由旋转。 当一键自动优化过程成功完成后,伺服驱动会根据实际机床特性自动设置下面的陷波滤波 器相关参数。最多四个滤波器可以被激活。你可以在优化结果窗口中查看下面的参数。

参数	取值范围	缺 省 值	单 位	描述
p1663	0.5 至 16000	1000	Hz	电流陷波滤波器 2 分母的固有频率。
p1664	0.001 至 10	0.3	-	电流陷波滤波器 2 分母的阻尼。
p1665	0.5 至 16000	1000	Hz	电流陷波滤波器 2 分子的固有频率。
p1666	0.0 至 10	0.01	-	电流陷波滤波器 2 分子的阻尼。
p1668	0.5 至 16000	1000	Hz	电流陷波滤波器 3 分母的固有频率。
p1669	0.001 至 10	0.3	-	电流陷波滤波器 3 分母的阻尼。
p1670	0.5 至 16000	1000	Hz	电流陷波滤波器 3 分子的固有频率。
p1671	0.0 至 10	0.01	-	电流陷波滤波器 3 分子的阻尼。
p1673	0.5 至 16000	1000	Hz	电流陷波滤波器 4 分母的固有频率。
p1674	0.001 至 10	0.3	-	电流陷波滤波器 4 分母的阻尼。

参数	取值范围	缺 省 值	单 位	描述
p1675	0.5 至 16000	1000	Hz	电流陷波滤波器 4 分子的固有频率。
p1676	0.0 至 10	0.01	-	电流陷波滤波器 4 分子的阻尼。

说明

当谐振抑制功能自动激活时,陷波滤波器依然运行。

一键自动优化后,最多四个滤波器可以被激活。通过参数 p1656 可以禁用陷波滤波器:

4.3.3.2 实时自动优化

说明

当加速/减速过程中受到突然的干扰扭矩时或机床刚性很差时,自动优化功能可能不能正常使用。此时,可使用一键自动优化或者手动优化来优化驱动。

通过实时自动优化功能,伺服驱动可以自动估算负载惯量比,并据此实时设置最优控制参数。

使用实时自动优化的前提条件

- 驱动必须由上位机控制。
- 当机床移动至不同位置时,机床实际负载惯量不同。
- 确保电机有多次加速和减速。推荐使用阶跃式指令。
- 机床在运行时,机械谐振频率会发生变化。

执行以下步骤来启用实时自动优化功能:

1. 在下面的区域中选择动态因子:

动态系数	18 📮 用户调整的响应等级		

关于选择动态因子的更多信息,请参见 SINAMICS V90, SIMOTICS S-1FL6 操作说明中的"实时自动优化"章节。

2. 点击下面的按钮为实时自动优化配置参数。

高级设置

3. 在下面的窗口中设置参数:

位掩码	描述	值	位掩码	描述	值
Bit 0			Bit 0	高负载转动惯量条件下的PD控制器	17
Ed 1			Bit 1	低转速时减小增益	E
Bit 2	激活/取消转动惯量评估器		Bit 2	负载自适应Kp	
Bit 3	循环/单次计算转动惯量	7	Bit 3	速度前馈	E
			Bit 4	扭矩前馈	F
			Bit 5	匹配最大加速度	E
Bit 6	自适应共振滤波器	1			
Bit 7	多轴插补	12			

说明**:**

你可以通过以下方式来设置机床负载惯量比(p29022):

- 若已知机床的负载惯量比,可直接手动输入
- 使用通过一键自动优化功能估算获得的机床负载惯量比
- 通过实时自动优化功能来估算机床的负载惯量比(p29024.2 = 1)。当得到稳定的 p29022的值时,你可以通过设置 p29024.2 = 0 停止估算。

当多轴插补功能被激活(p29024.7 = 1)时,参数 p29028 可用。若有多个轴被用作插补轴,你需要为它们设置相同的前馈时间常数(p29028)。优化结束后,若它们的位置环增益(p29110[0])不用,则需要手动将他们设置为一个相同的值。

必须在自动优化功能禁用(p29021=0)时小心设置高级设置窗口中的参数。

4. 所有的参数设置完成后,点击下面的按钮开始优化。

启动实时自动优化

 通过上位机控制伺服使能驱动,开始优化。 例如,你可以使用下面的方法运行电机。
 通过 Jog 来伺服使能驱动。

Jog		
	伺服使能	

输入电机转速并按下方向按钮使电机运转。

伺服关使能			
转流 100	rpm 🛐 💽		
实际速度 (rpm)	实际提矩 (Nm)	实际电流 (A)	实际电机利用率 (%)
		1 (A A A A A A A A A A A A A A A A A A	

- 6. 可以通过在优化过程中改变动态因子或相关的控制参数来获得预期的系统性能。
- 7. 在驱动性能可接受后,可以执行伺服关闭操作并设置 p29021 = 0 来禁用该优化功 能。
- 8. 将优化后的参数从 RAM 拷贝到 ROM 中进行保存。

实时自动优化时的谐振抑制(p29021=3, p29024.6=1)

实时自动优化带有谐振抑制功能。该功能在默认情况处于激活状态。

当使用实时自动优化功能时,如果机床没有谐振,推荐禁用谐振抑制功能以得到较高的动态性能。

可以通过 p29024 的位 6 激活/禁用该功能。

在实时自动优化启用谐振抑制功能时,伺服驱动实时检测谐振频率并据此设置以下陷波滤 波器的相关参数:

参数	取值范围	缺 省 值	单 位	描述
p1663	0.5 至 16000	1000	Hz	电流陷波滤波器 2 分母的固有频率。
p1664	0.001 至 10	0.3	-	电流陷波滤波器 2 分母的阻尼。

参数	取值范围	缺 省 值	单 位	描述
p1665	0.5 至 16000	1000	Hz	电流陷波滤波器 2 分子的固有频率。
p1666	0.0 至 10	0.01	-	电流陷波滤波器 2 分子的阻尼。

4.3.3.3 手动优化

当自动优化功能没有达到预期优化效果时,可以通过参数 p29021 禁止自动优化功能,然 后进行手动优化:

- p29021=5: 禁止自动优化功能,并恢复所有控制参数为默认值。
- p29021=0: 不更改控制参数的情况下禁止自动优化功能。

参数设置

可在以下面板上设置相关参数:

增益设置 恢复到认信						
相	学数号	学教名	受款值	单位	泡翻	影认信
基本	p29022	优化:总惯量与电机惯量	1.000	N.A.	[1, 10000]	1
基本	p29025	优化:通用配置	4	N.A.	NULL	4
増益调整	p29110[0]	位置环增益 位置环增益 0	1.800	1000/min	[0 , 300]	1.8
增益调整	p29111	速度溃系数(进给前馈)	0.000	96	[0.200]	0
增益调整	p29120[0]	速度环增益:速度环增益0	0.300	Nms/rad	[0,999999]	0.3
増益调整	p29121[0]	速度环积分时间:速度环	15.000	ms	[0.100000]	15
位置控制	p2533	LR 位置设定值滤波器 时	0.000	ms	[0, 1000]	0
位置控制	p2572	EPOS 最大加速度	100	1000 LU/s2	[1.2000000]	100
位置控制	p2573	EPOS 最大减速度	100	1000 LU/s2	[1.2000000]	100
速度环滤波器设置						
细	参数号	学校名	参数的	单位	范围	影认信
速度控制	p1414	速度设定值滤波器激活	0	N.A.	NULL	0
速度控制	p1415	速度设定值滤波器 1 类型	0:低通滤波器	• N.A.	NULL	0
速度控制	p1417	速度设定值滤波器 1 分母	2000.000	Hz	[0.5 , 16000]	2000
速度控制	p1418	速度设定值滤波器 1 分母	0.700	N.A.	[0.001, 10]	0.7
速度控制	p1419	速度设定值滤波器 1 分子	2000.000	Hz.	[0.5.16000]	2000
速度控制	p1420	速度设定值滤波器 1 分子	0.700	N.A.	[0, 10]	0.7
速度控制	p1441	速度实际值滤波时间	0.000	ms	[0.50]	0
扭矩环滤波器设置						
组	学数号	参数名	学教馆	單位	范围	對认值
扭矩控制	p1656	电流设定值滤波器激活	1	N.A.	NULL	1
扭矩控制	p1658	电流设定值滤波器 1 分母	1000.000	Hz	[0.5 , 16000]	1000
扭矩控制	p1659	电流设定值滤波器 1 分母	0.700	N.A.	[0.001, 10]	0.7
扭矩控制	p1663	电流设定值滤波器 2 分母	500.000	Hz.	[0.5 , 16000]	500
把矩控制	p1664	电流设定值滤波器 2 分母	0.300	N.A.	[0.001.10]	0.3
扭矩控制	p1665	电流设定值滤波器 2 分子	500.000	Hz	[0.5 , 16000]	500
扭矩控制	p1666	电流设定值滤波器 2 分子	0.010	N.A.	[0.10]	0.01
扭矩控制	p1668	电流设定值滤波器 3 分母	1999.000	Hz	[0.5 , 16000]	1999
扭矩控制	p1669	电流设定值滤波器 3 分母	0.700	N.A.	[0.001, 10]	0.7
扭矩控制	p1670	电流设定值滤波器 3 分子	1999.000	Hz	[0.5 , 16000]	1999
扭矩控制	p1671	电流设定值滤波器 3 分子	0.700	N.A.	[0.10]	0.7
扭矩控制	p1673	电流设定值滤波器 4 分母	1999.000	Hz	[0.5 , 16000]	1999
拥护控制	p1674	申渣设定值滤波器 4 分母	0.700	N.A.	10.001 . 101	0.7

点击<u>恢复默认值</u>将下列参数设置为它们的优化默认值。当使用不同的驱动和电机时,参数的优化默认值可能不同。该按钮的功能不同于恢复驱动默认值,因此,这些控制参数的优化默认值可能与它们的工厂默认值不同。

- p1414
- p1415
- p1656
- p1658
- p1659
- p2533
- p29110[0]
- p29111
- p29120[0]
- p29121[0]

手动优化时的谐振抑制(p29021=0)

当实时自动优化和一键自动优化模式下的谐振抑制都没有达到预期的抑制效果时,可以通 过下列参数来手动进行谐振抑制。

参数	取值范围	缺 省 值	单 位	描述
p1663	0.5 至 16000	1000	Hz	电流陷波滤波器 2 分母的固有频率。
p1664	0.001 至 10	0.3	-	电流陷波滤波器 2 分母的阻尼。
p1665	0.5 至 16000	1000	Hz	电流陷波滤波器 2 分子的固有频率。
p1666	0.0 至 10	0.01	-	电流陷波滤波器 2 分子的阻尼。
p1668	0.5 至 16000	1000	Hz	电流陷波滤波器 3 分母的固有频率。
p1669	0.001 至 10	0.3	-	电流陷波滤波器 3 分母的阻尼。

参数	取值范围	缺 省 值	单 位	描述
p1670	0.5 至 16000	1000	Hz	电流陷波滤波器 3 分子的固有频率。
p1671	0.0 至 10	0.01	-	电流陷波滤波器 3 分子的阻尼。
p1673	0.5 至 16000	1000	Hz	电流陷波滤波器 4 分母的固有频率。
p1674	0.001 至 10	0.3	-	电流陷波滤波器 4 分母的阻尼。
p1675	0.5 至 16000	1000	Hz-	电流陷波滤波器 4 分子的固有频率。
p1676	0.0 至 10	0.01	-	电流陷波滤波器 4 分子的阻尼。

假设陷波频率为 f_{sp},陷波宽度为 f_{BB},陷波深度为 K,那么可以根据以下公式计算滤波器 参数:

p1663=p1665=f_{sp}

p1664=f_{BB} / (2 × f_{sp})

p1666=($f_{BB} \times 10^{(k/20)}$)/(2 × f_{sp})

切换模式

共计以下两种切换模式:

这两种切换模式不可同时使用。一种模式使能时,另一种被禁止。必须禁止自动优化功能 和增益切换功能才能使用 PI/P 切换功能。当增益切换功能使能时,PI/P 切换功能被禁用 但所做设置不会被清空。

• 增益切换

共计五个增益切换模式可选:

- 禁止增益切换
- 通过数字量输入信号(G-CHANGE)的增益切换。
- 通过位置偏移的增益切换
- 通过位置设定频率的增益切换
- 通过实际速度的增益切换

如选择最后三种增益切换模式中的任意一种,则需设置条件阈值。

• 速度环 PI/P 切换

PI/P 切换功能共有五种切换模式可选:

- 通过扭矩设定值
- 通过数字量输入信号(G-CHANGE)
- 通过速度设定值
- 通过加速度设定值
- 通过脉冲偏差

如选择任意 PI/P 切换模式(第二种模式除外),则需设置条件阈值。

说明

PI/P 切换

PI/P 切换功能在 T 模式(扭矩控制模式)下不可用。 PI/P 切换会延迟几毫秒响应。

4.3.3.4 低频振动抑制

低频振动抑制功能为位置设定值滤波功能。它可以抑制频率为 0.5 Hz 至 62.5 Hz 之间的 振动。该功能在 IPos 控制模式下有效。

相关参数

当使用低频振动抑制功能时,需要配置下面的参数:

参数	取值范 围	缺省值	单位	描述
p29035	0至1	0	-	激活谐振抑制。
				• 0: 禁用
				• 1: 使能
p31581	0至1	0	-	振动抑制滤波器类型。
				• 0: 耐用
				• 1: 敏感

参数	取值范 围	缺省值	单位	描述
p31585	0.5 至 62.5	1	Hz	振动抑制滤波器频率。
p31586	0 至 0.99	0.03	-	振动抑制滤波器阻尼。

操作步骤

- 1. 设置驱动器为伺服关闭状态。
- 2. 切换至"查看所有参数"面板设置相关参数。
 - 通过参数 p31581 设置滤波器类型。
 - 0: 耐用
 - 1: 敏感
 - 通过参数 p31585 设置抑制频率。
 - 可以设置的抑制频率范围为 0.5 Hz 至 62.5 Hz。
 - 通过参数 p31586 设置滤波器阻尼。
 - 可以设置的阻尼范围为0至0.99。
- 3. 在下面的面板中设置驱动的控制模式。

控制模式		
内部设定值位置控制(IPos)	-	已选择内部设定值位置控制(IPos) 使用内部位置设定值来控制电机速度和方向,并进行定位。

- 4. 在"查看所有参数"面板内通过参数 p29035 使能低频振动抑制功能。
 - 设置 p29035 = 1 激活该功能。
- 5. 设置驱动器为伺服使能状态。

4.4 诊断

4.4.1 监控电机状态

说明

该功能仅用于在线模式。

您可使用该功能监控运动数据的实时值。运动数据和产品信息显示在以下面板上:

运动数据				
参数号	描述	当前值	单位	•
r29015	PTI: 脉冲输入频率	0	N.A.	
r29018[0]	OA 版本: Firmware version	10500	N.A.	
r29400	内部控制信号状态指示	12	N.A.	
r29942	DO 状态学	10	N.A.	
r29979	实际电子齿轮比	0	N.A.	
r18	中央控制单元固件版本	4703528	N.A.	
r20	已滤波的速度设定值	0.000	rpm	
r21	已滤波的速度实际值	0.000	rpm	
r26	经过滤波的直流母线电压	1.000	v	
r27	已滤波的电流实际值	0.000	Arms	
r29	已滤液的磁通电流实际值	0.000	Arms	
r30	已速渡的禮矩电流实际值	0.000	Arms	
r31	已滤波的扭矩实际值	0.000	Nm	
r33	已滤波的扭矩利用率	0.000	%	
r37[0]	功率单元温度:逆变器最大值	31.700	°C	
r61[0]	未滤液的速度实际值:编码器1	0.000	rpm	
r79[0]	总根拒设定值:未滤波的	0.000	Nm	
r296	直流母线欠电压阀值	320	v	
r297	直流母线过电压阈值	820	v	
产品信息				
	驱动: 6SL3210-5FE10-4UA0 额定电流: 1.2 A 团件版本: v10500	- 💼	电机: 1FL6042-1AF6x-xAA\/Gx 编码器: 增量式 数定提矩: 1.27 Nm 数定功平: 0.4 KW	

4.4.2 录波信号

您可使用该功能在以下面板上录波所连驱动在当前模式下的性能:

区域	项目		描述
1	录波配置	7 7	打开录波配置窗口。更多信息请参见"录波配置 (页 107)"。
	开始/停止录		开始记录当前录波。
	波		如需停止录波进程,可点击以下按钮:
	(仅用于在线		
	楔 式)		
2	光标	•	将光标形状从十字形改为箭头。
			光标以箭头显示时,可直接选择一条曲线并进行
			变量计算。
			说明:
			所选曲线以高亮显示。
		*	如点击该按钮,可在光标显示为手形以后自由移 动所选曲线。

区域	项目		描述
	辅助线	111	 垂直光标: 在时域图中,可点击该按钮在图中显示坐标 t1 和 t2。光标变为配时,可移动 t1 或 t2。 在频域图中,激活该按钮在图中显示高亮坐标。当光标变为配时,可在图中移动该坐标。
			水平光标: • 在时域图中,可点击该按钮在图中显示坐标 y1 和 y2。光标变为€ 时,可移动 y1 或 y2。 ● 在频域图中,该按钮不可用。
	缩放	\odot	以特定比例放大当前曲线。
		Θ_{\bullet}	以特定比例缩小当前曲线。
		Ŧ	恢复图中的曲线。
	文件操作	2	打开已有的.trc 文件在图中显示曲线。
			将当前记录的值保存为.trc 格式的文件。
	说明: 在频域图中,	水平光标	按钮 😑 不可用。
3	图形		 时域图: 显示曲线的时域图并记录所测量到的参数值。 频域图: 可用于计算得出的曲线并显示傅立叶变换。
4	时域图		
	Т		 坐标 T (时间): t1: 坐标 t1 的实时值 t2: 坐标 t2 的实时值 dt: 自动算出的时间。 公式如下:

区域	项目	描述
	Y	坐标 Y:
		• y1:坐标 y1 的实时值
		• y2: 坐标 y2 的实时值
		• dy: 自动算出的取值范围。
		公式如下:
		dy = y2 - y1
	Y(T)	• y(t1):坐标 t1 和所选曲线交点处的实时值。
		• y(t2): 坐标 t2 和所选曲线交点处的实时值。
		• dy(t): 自动算出的实时取值范围。
		公式如下:
		dy(t) = y(t2) - y(t1)
	说明:	
	您可通过点击坐标名称来过	选择坐标,所选坐标显示为黄色。
	频域图	
	频率	在图中显示水平光标坐标处的实时频率值。
	振幅	显示水平光标坐标和曲线交点的实时振幅值。
5	曲线选择	选择一条曲线在图中显示。
		 时域图:
		共计六条曲线可同时在图中显示。
		• 频域图:
		仅能选择一条曲线在图中显示。

4.4.2.1 录波配置

录波配置		×
选择模拟信号	1	
序号 激活	信号	颜色
1	r37[0]: 功率单元温度: 逆变器最大值	选择
2	r482[0]: 编码器位置实际值 Gn_XIST1 : 编码器 1	选择
3	1482[1]: 编码器位置实际值 Gn_XIST1 : 编码器 2	选择
选择数字信号	2	
序号 激活	信号	颜色
1	r722.0: CU 数字输入状态[DI 0 (X8.5)]	选择
2	r722.1: CU 数字输入状态[DI 1 (X8.6)]	选择
3	[7/22.2: CU 数字输入状态[DI 2 (X8.7)]	选择
记录	0	
设备时钟周期	- 0.25 春秋	
此彻玄物。	1 早 是十時地时间。	4096 奇孙
101212022		4050 3547
录波时钟周期	· 0.25 受秒 录波持续时间;	1000 登秒
触发条件	(4)	
触发类型:	立即记录	
	2000	
		确定 取消

编号	功能说明		
1	点击以下按钮可选择模拟信号。		
	选择		
	选择录波信号并点击 确定 来确认选择。或者,可以点击 取消 取		
	消。		
	点击色条定义信号曲线的显示颜色。		
2	点击以下按钮可选择数字信号。		
	选择		
	选择录波信号并点击 确定 来确认选择。或者,可以点击 取消 取		
	消。		
	点击色条定义信号曲线的显示颜色。		
3	记录设置:		
	您可选择系数并定义录波时钟周期、最大持续时间以及录波持续时间。		

编号	功能说明	
4	共计七种触发类型可用:	
	• 立即记录 (默认设置)	
	• 上升沿触发	
	说明:	
	数字量信号必须设为1。否则,上升沿将不会被触发。	
	• 下降沿触发	
	说明:	
	数字量信号必须设为0。否则,下降沿将不会被触发。	
	• 容忍区间内触发	
	• 容忍区间外触发	
	 告警触发 	
	 故障触发 	
	触发类型设置:	
	• 最后六种触发类型需要选择预触发或后触发以及触发信号。	
	• 第四、五种触发类型需要在文本框内输入阈值上/下限。	

4.4.3 测量机械性能

测量功能用于控制器优化。您可使用测量功能通过简单的参数设置禁止更高级控制环的影响,并能分析单个驱动的动态响应。

可选择预定义的测量功能来更简单的执行控制器优化。操作模式根据测量功能自动设置。

• 速度控制器设定值频率响应(在速度设定值滤波器之前)

所有更高级控制环打开时,速度控制环关闭。对于速度控制器上的设定值频率响应来 说,速度设定值由 PRBS 信号激活。信号的评估在频率范围内进行。

• 速度控制系统(电流设定值滤波器后的激励)

所有更高级控制环打开时,速度控制环关闭。对于速度控制器上的速度控制器系统测量来说,速度设定值由 PRBS 信号激活。信号的评估在频率范围内进行。

• 电流控制器设定值频率响应(在电流设定值滤波器之后)

对于速度控制器上的设定值频率响应来说,速度设定值由 PRBS 信号激活。信号的评估在频率范围内进行。
测量机械性能仅在在线模式下可用。

概述

区域	项目	描述
1	测量功能	• 速度控制器设定值频率响应(在速度设定值滤波器之前)
		• 速度控制系统(电流设定值滤波器后的激励)
		• 电流控制器设定值频率响应(在电流设定值滤波器之后)
	振幅	要输入的信号幅值。 对于电流控制器来说,该值为以百分比表示的相对值。该值为参考电 流(p2002)。对于速度控制器来说,幅值总以物理单位计。
	偏移量	附加在测试信号上的直流分量。 该值和幅值的规格一样。请注意运行时的测量值保存时已减去偏移 量。

区域	项目		描述
	带宽		测量带宽可通过 PRBS 信号来激活。
			带宽 = 1/(2*采样频率)。由于仅最小采样时间(0.25ms)的 2 ⁿ 倍可用,可执行的带宽就被量子化了。
2	伺服使能/伺服	关使能	点击 伺服使能 🔲 会出现以下警告:
			警告 × 此功能仅供有权限的用户使用。 运行过程中,请确保电机和机械装置的实际位置有效。 必须采取适当方式将硬件装置连到EMGS信号以实现急停功能。
			点击 <u> </u>
			伺服使能 ■ 变成 伺服关使能 ■ 。如需放弃控制优 先权,则可直接点击此按钮。
	开始录波		点击此按钮开始录波。
			说明:
			录波进行时,不可停止录波,仅能等待录波完成。
3	光标	×	将光标形状从十字形改为箭头。光标以箭头显示时,可直接选择一条曲线并进行变量计算。 说明: 所选曲线以高亮显示。
		٩	如点击该按钮,可在光标显示为手形以后自由移动所选曲线。
	辅助线		垂直光标: 在时域图中,可点击该按钮在图中显示坐标 t1 和 t2。光标变为录时, 可移动 t1 或 t2。 在频域图中,激活该按钮在图中显示高亮坐标。当光标变为录时,可 在图中移动该坐标。
			 水平光标: 在时域图中,可点击该按钮在图中显示坐标 y1 和 y2。光标变为 ↔ 时,可移动 y1 或 y2。 在频域图中,该按钮不可用。

区域	项目		描述				
	缩放	•	以特定比例放大当前曲线。				
		0	以特定比例缩小当前曲线。				
		西	恢复图中的曲线。				
	文件操作	2	打开已有的.trc 文件在图中显示曲线。				
		3 <mark>0</mark>	将当前记录的值保存为.trc 格式的文件。				
	说明: 在频域图中,	水平光标按钥	日 🔄 不可用。				
4	图形		• 时域图:				
			显示曲线的时域图并记录所测量到的参数值。				
			• 频域图:				
			可用于计算得出的曲线并显示傅立叶变换。				
			● 伯德图:				
			可用于计算出的曲线。				
5	时域图						
	т		坐标 T (时间):				
			• t1: 坐标 t1 的实时值				
			• t2: 坐标 t2 的实时值				
			• dt: 自动算出的时间。				
			计算公式如下:				
			dt = t2 - t1				
	Y		坐标 Y:				
			• y1: 坐标 y1 的实时值				
			• y2: 坐标 y2 的实时值				
			• dy: 自动算出的取值范围。				
			计算公式如下:				
			$dy = y^2 - y^1$				

区域	项目	描述					
	Y(T)	• y(t1): 坐标 t1 和所选曲线交点处的实时值。					
		• y(t2): 坐标 t2 和所选曲线交点处的实时值。					
		• dy(t): 自动算出的实时取值范围。					
		计算公式如下:					
		dy(t) = y(t2) - y(t1)					
	说明:						
	您可通过点击坐标名称来进	<选择坐标,所选坐标显示为黄色。					
	频域图						
	频率	在图中显示水平光标坐标处的实时频率值。					
	振幅	显示水平光标坐标和曲线交点的实时振幅值。					
	伯德图						
	频率	在图中显示水平光标坐标处的实时频率值。					
	振幅	显示水平光标坐标和曲线交点的实时振幅值。					
6	曲线选择	选择一条曲线在图中显示。					
		 时域图: 					
		共计六条曲线可同时在图中显示。					
		• 频域图:					
		仅能选择一条曲线在图中显示。					

4.5 与 PLC 通讯

SINAMICS V90 可通过 RS485 接口的 USS 协议与 PLC 进行通信。您可以通过参数设置 为 RS485 接口选择 USS 或者 Modbus RTU 协议。USS 为默认总线设置。建议使用屏蔽 双绞线作为 RS485 通信电缆。

4.5.1 USS 通信

SINAMICS V90 伺服驱动通过 RS485 电缆与 PLC 通信并使用标准 USS 通信协议。通信 建立之后,可以通过 USS 通信协议改变位置设定值和速度设定值。通过 USS 通信协 议,伺服驱动也可以与 PLC 进行实际速度,扭矩以及报警的传输。

报文格式

报文格式如下所示:

STX	LGE	ADR	PKE	IND	PWE	PWE	BCC
STX : 正文开:	始						
LGE:长度							
ADR :从站地	址						
PKE:参数 ID)						
IND :子下标							
PWE :参数值							
BCC : 块校验	字符						

相关参数

可以通过 USS 访问以下参数:

参数	描述	参数	描述
p1001	内部速度设定值 1	r0020	平滑的速度设定值
p1002	内部速度设定值 2	r0021	平滑的实际速度值
p1003	内部速度设定值 3	r0026	平滑的直流母线电压
p1004	内部速度设定值 4	r0027	平滑的实际电流绝对值

参数	描述	参数	描述
p1005	内部速度设定值 5	r0031	平滑的实际扭矩值
p1006	内部速度设定值 6	r0032	平滑的有效功率实际值
p1007	内部速度设定值 7	r0034	电机热负载功率
p2617[0 7]	内部位置设定值	r0807	控制权激活
p2618[0 7]	内部位置设定值的速度	r2521	LR 实际位置值
p2572	IPos 最大加速度	r2556	LR 设定值平滑后的位置设定值
p2573	IPos 最大减速度		

BOP、V-ASSISTANT 以及 USS 在存取参数时没有优先级的区分,被存取参数的值取决于最后对其进行存取的操作。

操作步骤

- 1. 设置驱动器为伺服关闭状态。
- 2. 切换至"查看所有参数"面板设置相关参数。
 - 通过参数 p29004 配置 RS485 总线地址。
 - 可配置的从站地址为1至31。
 - 通过参数 p29007 设置通信协议。
 - 设置 p29007 =1 使用 USS 通信协议。
 - 通过参数 p29009 设置传输波特率。
- 3. 在下面的面板中设置驱动的控制模式。

制模式			
外部脉冲位置控制(PTI)	•	已选择外部脉冲位置控制(PTI) 使用脉冲等的制度机等度和实际	#JHCARA
		使用邮件本注意唱机 建度相 / 1回,	开班行连证。

4. 保存参数并重启驱动。

- 5. 通过 USS 存取参数。
 - 在 IPos 控制模式下,可以通过 USS 存取下列参数:
 - p2617[0...7]、p2618[0...7]、p2572、p2573
 - 在 S 控制模式下,可以通过 USS 存取下列参数:
 - p1001至p1007
 - 通过 USS 可以对以下参数进行监控:
 - r0020、r0021、r0026、r0027、r0031、r0032、r0034、r0807、r2556 和 r2521

S7-200、S7-200 SMART V1.0 和 S7-1200 的 USS 协议通信库不支持与 SINAMICS V90 伺服驱动的通信。

4.5.2 Modbus 通信

SINAMICS V90 伺服驱动通过 RS485 电缆可与 PLC 使用标准 Modbus 通信协议进行通信。V90 支持 Modbus RUT 数据格式,不支持 Modbus ASCII 数据格式。伺服驱动的寄存器可以通过通过 Modbus 的 FC3 功能代码读取,并通过 FC6 功能代码(单一寄存器)或 FC16 功能代码(多寄存器)写入。SINAMICS V90 仅支持三种功能代码。如果收到带有未知功能代码的请求,从站会返回错误消息。

操作步骤

- 1. 设置驱动器为伺服关闭状态。
- 2. 切换至"查看所有参数"面板设置相关参数。
 - 通过参数 p29004 配置 RS485 总线地址。
 - 可配置的从站地址为1至31。
 - 通过参数 p29007 设置通信协议。
 - 设置 p29007 =2 使用 Modbus 通信协议。
 - 通过参数 p29008 选择 Modbus 控制源。
 - p29008 = 1: 设定值和控制字来自于 Modbus PZD
 - p29008 = 2: 无控制字
 - 通过参数 p29009 设置传输波特率。

3 在下面的面板中设置驱动的控制模式。 控制模式 已选择外部脉冲位置控制(PTI) 使用脉冲来控制电机速度和方向,并进行定位。 外部脉冲位置控制(PTI) • 4. 保存参数并重启驱动。 配置 PLC 相关参数。 5 说明: 需确保 PLC 的波特率与驱动设置一致。 设置 PLC 校验方式为偶校验。 6. 通过 PLC 写控制字。 说明: 必须设置寄存器 40100 的位 10 为 1 以允许 PLC 控制驱动。 需要触发 OFF1 的上升沿将电机设置为伺服使能状态, OFF2 和 OFF3 必须设 置为1.第一次伺服使能时必须执行该步骤。 7. 通过 PLC 写入设定值,查看状态字。

示例

下面通过一个示例来说明该功能的操作步骤。示例为在 S 控制模式下,使用来自于 Modbus 的设定值和控制字作为 Modbus 控制源。

- 1. 为驱动设置 RS485 总线地址。
 - p29004 = 1
- 2. 通过参数 p29007 选择 Modbus 协议。
 - p29007 = 2
- 3. 通过参数 p29008 选择 Modbus 控制源。
 - p29008 = 1
- 4. 通过参数 p29009 设置传输波特率。
 - p29009 = 8 (38400 波特)
- 5. 保存参数并重启驱动。
- 6. 设置驱动的工作模式为 S 控制模式。

7. 配置 PLC 相关参数。

说明:

需确保 PLC 的波特率与驱动设置一致。 设置 PLC 校验方式为偶校验(parity = 2)。

8. 通过寄存器 40100 写入需要的控制字。

说明**:**

必须设置寄存器 40100 的位 10 为 1 以允许 PLC 控制驱动。

需要触发 OFF1 的上升沿将电机设置为伺服使能状态, OFF2 和 OFF3 必须设置为 1.第一次伺服使能时必须执行该步骤。

例如:首先,将 0x41E 写入寄存器 40100 中,然后再将 0x41F 写入寄存器 40100 中。此时电机被设置为伺服使能状态。您可以通过下面的控制字定义表来查看 "0x41E"和"0x41F"的含义。 9. 将速度设定值写入寄存器 40101 中。

说明:

可以通过定标系数来计算实际速度值。0x4000 代表 100% × 电机额定转速的值。因此, 0x2000 代表电机额定转速的一半。

关于 Modbus 通信功能的更多详情请参见 SINAMICS V90, SIMOTICS S-1FL6 操作说明。

映射表

SINAMICS V90 伺服驱动支持以下寄存器。"访问类型"一列中的"R"、"W"、"R/W"分别代表读、写、读/写。

寄存编号	描述	Modbus 访问类型	单位	定标系数	范围或开/ 关文本	数据/参数
40100	控制字(PTI、IPos、 S、T)	R/W	-	1	-	过程数据 1,接收 字,PZD1
40101	速度设定值(S)	R/W	-	0x4000 hex = 100% × 电机额定转 速	-	过程数据 2,接收 字,PZD2
40102	位置设定值高字 (IPos)	R/W	LU	1	- 21474826	过程数据 3,接收 字,PZD3
40103	位置设定值低字 (IPos)	R/W	LU	1	48 至 21474826 47	过程数据 4,接收 字,PZD4
40110	状态字(PTI、IPos、 S、T)	R	-	1	-	过程数据 1,发送 字,PZD1

寄存编号	描述	Modbus 访问类型	单位	定标系数	范围或开/ 关文本	数据/参数
40111	实际速度(PTI、 IPos、S、T)	R	-	0x4000 hex = 100% × 电机额定转 速	-	过程数据 2,发送 字,PZD2
40112	实际位置高字(PTI、 IPos)	R	LU	1	- 21474826	过程数据 3 ,发送 字,PZD3
40113	实际位置低字(PTI、 IPos)	R	LU	1	48 至 21474826 47	过程数据 4,发送 字,PZD4
40200	DO 1	R/W	-	1	高/低	r0747.0
40201	DO 2	R/W	-	1	高/低	r0747.1
40202	DO 3	R/W	-	1	高/低	r0747.2
40203	DO 4	R/W	-	1	高/低	r0747.3
40204	DO 5	R/W	-	1	高/低	r0747.4
40205	DO 6	R/W	-	1	高/低	r0747.5
40220	AO 1	R	%	100	-100.0 至 100.0	-
40221	AO 2	R	%	100	-100.0 至 100.0	-
40240	DI 1	R	-	1	高/低	r0722.0
40241	DI 2	R	-	1	高/低	r0722.1
40242	DI 3	R	-	1	高/低	r0722.2
40243	DI 4	R	-	1	高/低	r0722.3
40244	DI 5	R	-	1	高/低	r0722.4
40245	DI 6	R	-	1	高/低	r0722.5
40246	DI 7	R	-	1	高/低	r0722.6
40247	DI 8	R	-	1	高/低	r0722.7
40248	DI 9	R	-	1	高/低	r0722.8
40249	DI 10	R	-	1	高/低	r0722.9
40260	AI 1	R	%	100	-300.0 至 300.0	-

寄存编号	描述	Modbus 访问类型	单位	定标系数	范围或开/ 关文本	数据/参数
40261	AI 2	R	%	100	-300.0 至 300.0	-
40280	启用 DI 模拟(高位)	R/W	-	1	高/低	-
40281	启用 DI 模拟(低位)	R/W	-	1	高/低	-
40282	设定值 DI 模拟(高 位)	R/W	-	1	高/低	-
40283	设定值 DI 模拟(低 位)	R/W	-	1	高/低	-
40300	功率堆栈代码号	R	-	1	0 至 32767	-
40301	V90 OA 版本	R	-	1	例如, 104xx 代 表 V01.04.xx	p29018[0]/10000
40320	功率单元额定功率	R	kW	100	0.00 至 327.67	-
40321	电流极限值	R/W	%	10	10.0 至 400.0	-
40322	斜坡上升时间	R/W	s	100	0.0 至 650.0	p1120
40323	斜坡下降时间	R/W	s	100	0.0 至 650.0	p1121
40324	参考转速	R	rpm	1	6 至 32767	额定电机转速
40325	控制模式	R/W	-	1	0至8	p29003
40340	速度设定值	R	rpm	1	-16250 至 16250	r0020
40341	转速实际值	R	rpm	1	-16250 至 16250	r0021
40344	直流母线电压	R	V	1	0 至 32767	r0026

寄存编号	描述	Modbus 访问类型	单位	定标系数	范围或开/ 关文本	数据/参数
40345	电流实际值	R	A	100	0 至 163.83	r0027
40346	实际扭矩值	R	Nm	100	-325.00 至 325.00	r0031
40347	有效功率实际值	R	kW	100	0 至 327.67	r0032
40348	能源消耗	R	kWh	1	0 至 32767	-
40349	优先控制权	R	-	1	手动/自动	r0807
40350/40351	位置设定值	R	LU	1	- 21474826 48 至 21474826 47	r2556
40352/40353	实际位置值	R	LU	1	- 21474826 48 至 21474826 47	r2521[0]
40354	电机利用率	R	%	100	-320.00 至 320.00	r0034
40400	故障号,索引0	R	-	1	0 至 32767	-
40401	故障号,索引 1	R	-	1	0 至 32767	-
40402	故障号,索引2	R	-	1	0 至 32767	-
40403	故障号,索引3	R	-	1	0 至 32767	-
40404	故障号,索引4	R	-	1	0 至 32767	-
40405	故障号,索引5	R	-	1	0 至 32767	-

寄存编号	描述	Modbus 访问类型	单位	定标系数	范围或开/ 关文本	数据/参数
40406	故障号,索引6	R	-	1	0 至 32767	-
40407	故障号,索引7	R	-	1	0 至 32767	-
40408	报警号	R	-	1	0 至 32767	-
40800/40801	内部位置设定值 1	R/W	LU	1	- 21474826 48 至 21474826 47	P2617[0]
40802/40803	内部位置设定值2	R/W	LU	1	- 21474826 48 至 21474826 47	p2617[1]
40804/40805	内部位置设定值3	R/W	LU	1	- 21474826 48 至 21474826 47	p2617[2]
40806/40807	内部位置设定值4	R/W	LU	1	- 21474826 48 至 21474826 47	p2617[3]
40808/40809	内部位置设定值5	R/W	LU	1	- 21474826 48 至 21474826 47	p2617[4]

寄存编号	描述	Modbus 访问类型	单位	定标系数	范围或开/ 关文本	数据/参数
40810/40811	内部位置设定值 6	R/W	LU	1	- 21474826 48 至 21474826 47	p2617[5]
40812/40813	内部位置设定值7	R/W	LU	1	- 21474826 48 至 21474826 47	p2617[6]
40814/40815	内部位置设定值8	R/W	LU	1	- 21474826 48 至 21474826 47	p2617[7]
40840/40841	内部位置设定值 1 的 速度	R/W	1000 LU/min	1	1 至 40000000	p2618[0]
40842/40843	内部位置设定值 2 的 速度	R/W	1000 LU/min	1	1 至 40000000	p2618[1]
40844/40845	内部位置设定值 3 的 速度	R/W	1000 LU/min	1	1 至 40000000	p2618[2]
40846/40847	内部位置设定值 4 的 速度	R/W	1000 LU/min	1	1 至 40000000	p2618[3]
40848/40849	内部位置设定值 5 的 速度	R/W	1000 LU/min	1	1 至 40000000	p2618[4]
40850/40851	内部位置设定值 6 的 速度	R/W	1000 LU/min	1	1 至 40000000	p2618[5]
40852/40853	内部位置设定值 7 的 速度	R/W	1000 LU/min	1	1 至 40000000	p2618[6]
40854/40855	内部位置设定值 8 的 速度	R/W	1000 LU/min	1	1 至 40000000	p2618[7]
40880/40881	IPos 最大加速度	R/W	1000 LU/s²	1	1 至 2000000	p2572

寄存编号	描述	Modbus 访问类型	单位	定标系数	范围或开/ 关文本	数据/参数
40882/40883	IPos 最大减速度	R/W	1000 LU/s²	1	1 至 2000000	p2573
40884/40885	IPOS 加加速度限制	R/W	1000 LU/s ³	1	1 至 10000000 0	p2574
40900	内部速度设定值 1	R/W	-	0x4000 hex = 100% × 电机额定转 速	- 210000.00 0 至 210000.00	p1001
40901	内部速度设定值 2	R/W	-	0x4000 hex = 100% × 电机额定转 速	- 210000.00 0 至 210000.00	p1002
40902	内部速度设定值3	R/W	-	0x4000 hex = 100% × 电机额定转 速	- 210000.00 0 至 210000.00	p1003
40903	内部速度设定值4	R/W	-	0x4000 hex = 100% × 电机额定转 速	- 210000.00 0 至 210000.00	p1004
40904	内部速度设定值5	R/W	-	0x4000 hex = 100% × 电机额定转 速	- 210000.00 0 至 210000.00	p1005
40905	内部速度设定值6	R/W	-	0x4000 hex = 100% × 电机额定转 速	- 210000.00 0 至 210000.00	p1006
40906	内部速度设定值7	R/W	-	0x4000 hex = 100% × 电机额定转 速	- 210000.00 0 至 210000.00	p1007

寄存编号	描述	Modbus 访问类型	单位	定标系数	范围或开/ 关文本	数据/参数
40932/40933	MDI 位置设定值速度	R/W	1000 LU/min	1	1 至 21474826 47	p2691
40934	MDI 加速度倍率	R/W	%	100	0.1 至 100	p2692
40935	MDI 减速度倍率	R/W	%	100	0.1 至 100	p2693
40950	内部扭矩设定值	R/W	%	100	-100 至 100	p29043

过程数据概览

控制模式		PTI	IPos	S	Т
控制数 据	40100	PTI 控制模式控制字	IPos 控制模式控制 字	S 控制模式控制字	T 控制模式控制字
	40101	-	-	速度设定值	-
	40102 - 位置设定值高字		-	-	
	40103	-	位置设定值低字	-	-
状态数	40110	状态字	状态字	状态字	状态字
据	40111	实际速度	实际速度	实际速度	实际速度
	40112	实际位置高字	实际位置高字	-	-
	40113	实际位置低字	实际位置低字	-	-

寄存器 40100 定义

位		PTI 控制模式	IPos 控制模式		
	信号	描述	信号	描述	
0	SON_OF F1	通过上升沿伺服使能(脉冲可以被 使能)	SON_OF F1	通过上升沿伺服使能(脉冲可以被 使能)	
		0: OFF1(通过斜坡函数发生器停 车,脉冲被取消,准备上电就绪)		0: OFF1(通过斜坡函数发生器停 车,脉冲被取消,准备上电就绪)	
1	OFF2	 无 OFF2(允许使能) OFF2(立即取消脉冲,上电被 禁止) 	OFF2	 1:无 OFF2(允许使能) 0:OFF2(立即取消脉冲,上电被 禁止) 	
2	OFF3	 1:无 OFF3(允许使能) 0:OFF3(快速停车,脉冲被消除 且上电被禁止) 	OFF3	1:无 OFF3(允许使能) 0:OFF3(快速停车,脉冲被消除 且上电被禁止)	
3	OPER	 1: 允许运行(脉冲可以被使能) 0: 禁止运行(取消脉冲) 	OPER	 1: 允许运行(脉冲可以被使能) 0: 禁止运行(取消脉冲) 	
4	预留	-	SETP_AC C	触发上升沿来接收 MDI 设定值	
5	预留	-	TRANS_T YPE SE	 1: 立即接收新的设定值 0: 通过触发上升沿来接收新的设定 值 	
6	预留	-	POS_TYP	1: 绝对定位 0: 相对定位	
7	RESET	复位故障	RESET	复位故障	
8	预留	-	预留	-	
9	预留	-	预留	-	
10	PLC	使能 PLC 的控制权	PLC	使能 PLC 的控制权	
11	预留	-	预留	-	
12	预留	-	预留	-	
13	预留	-	SREF	启动回参考点(对于回参考点模式 0,用作 REF 信号)	
14	预留	-	预留	-	
15	预留	-	预留	-	

位		S控制模式	T 控制模式		
	信号	描述	信号	描述	
0	SON_OF F1	通过上升沿伺服使能(脉冲可以被 使能) 0: OFF1(通过斜坡函数发生器停 车,脉冲被取消,准备上电就绪)	SON_OF F1	通过上升沿伺服使能(脉冲可以被 使能)	
1	OFF2	 无 OFF2(允许使能) OFF2(立即取消脉冲,上电被 禁止) 	OFF2	 无 OFF2(允许使能) O: OFF2(立即取消脉冲,上电被 禁止) 	
2	OFF3	 1:无 OFF3(允许使能) 0:OFF3(快速停车,脉冲被消除 且上电被禁止) 	OFF3	 1:无 OFF3(允许使能) 0:OFF3(快速停车,脉冲被消除 且上电被禁止) 	
3	OPER	 1: 允许运行(脉冲可以被使能) 0: 禁止运行(取消脉冲) 	OPER	 1: 允许运行(脉冲可以被使能) 0: 禁止运行(取消脉冲) 	
4	EN_PAM P	 1:运行条件(斜坡函数发生器可以 被使能) 0:禁用斜坡函数发生器(设置斜坡 函数发生器的输出为零) 	预留	-	
5	预留	-	预留	-	
6	预留	-	预留	-	
7	RESET	复位故障	RESET	复位故障	
8	预留	-	预留	-	
9	预留	-	预留	-	
10	PLC	使能 PLC 的控制权	PLC	使能 PLC 的控制权	
11	Rev	旋转方向反转	预留	-	
12	预留	-	预留	-	
13	预留	-	预留	-	
14	预留	-	预留	-	
15	预留	-	预留	-	

在使用来自 Modbus 的设定值和控制字作为 Modbus 控制源(p29008 = 1)时,以下信号会被 Modbus 控制字占用。这些信号仅能通过 Modbus 控制字使能而不能通过外部 DI 端子使能。

- PTI 控制模式: SON
- IPos 控制模式: SON、SREF (对于回参考点模式 0,用作 REF 信号)
- S 控制模式: SON、CWE/CCWE
- T 控制模式: SON

说明

在 IPos 控制模式中,当选择相对定位后,必须设置使用上升沿(位 5 = 0)来接收 MDI 设定值;否则会出现故障 F7488。

说明

在 IPos 控制模式下,当使用 Modbus 为模态轴执行绝对定位时,可以通过参数 p29230 来选择 MDI 的方向。

说明

在寄存器 40100 中,所有预留的位均需要被设置为 0。

寄存器 40110 定义

位	PTI、IPos、S 和 T 控制模式					
	信号	描述				
0	RDY	伺服准备就绪				
1	FAULT	故障状态				
2	INP	位置到达信号				
3	ZSP	零速检测				
4	SPDR	速度达到				
5	TLR	达到扭矩限制				
6	SPLR	达到速度限制				
7	MBR	电机抱闸				

位	PTI、IPos、S 和 T 控制模式					
	信号	描述				
8	OLL	达到过载水平				
9	WARNING 1	达到警告 1 条件				
10	WARNING 2	达到警告 2 条件				
11	REFOK	回参考点				
12	MODE 2	处于第二种控制模式				
13	预留	-				
14	预留	-				
15	预留	-				

参数定标

由于受到 Modbus 协议中整数数据的限制,在发送驱动参数值之前有必要将其进行换算。 通过定标可实现这一换算,参数定标是用一个系数乘以带有一位小数的参数值,从而去除 其小数部分。具体的定标系数见上表。

索引

Ι

IO 仿真, 73

\mathbf{J}

Jog, 43

Ρ

PI/P 切换, 101

В

保存工程,23 保存参数到 ROM,27 帮助菜单概述,31 编码器信号输出,86

С

菜单栏概述,21 测试电机概述,86 测量机械性能,108

C H

查看所有参数,70

D

打开工程, 22 打印工程, 24 电机选择, 40

F

复制, 25 反向间隙补偿, 69

G

工作模式, 15 工具栏, 31 工具菜单概述, 27 工程另存为, 24 工程菜单概述, 21 功能键和快捷键, 33 告警窗口, 32

J

剪切,25 编辑菜单概述,25 绝对值编码器复位,28 机械结构,46 监控电机状态,103

Κ

控制模式,41

L

离线, 26 录波信号概述, 104 录波配置, 107

Μ

模拟量输入,84 模拟量输出,85 模拟量输出分配,62 脉冲输入,86

Ν

内容, **31** 扭矩限制, **57** 扭矩控制模式 扭矩设定值, **49**

Ρ

配置回零参数,62 配置输入/输出,60

Q

前言 技术支持,3 切换语言,25 切换菜单概述,26 驱动选择,38

S

速度限制,59

SH

数字量输入,76 直接信号映射,80 数字量输入分配,60 数字量输出,81 DO 警告信号的定义,84 数字量输出分配,61 手动优化, **97**

Т

退出工程, **25**

W

位置设定值,53 位置试运行,87

Х

系统配套表, **12** 新建工程, **22**

Y

运行环境, 11 用户界面概述, 20 优化模式概述, 89

Ζ

在线, 26

Z H

粘贴, 26 重启驱动器, 27